簡易檢索 / 詳目顯示

研究生: 吳旭富
Wu, Hsu-Fu
論文名稱: 設計及發展鋼絲輔助動態式髖部骨螺釘於骨鬆且不穩定轉子間骨折
Design and Development of Wire Reinforced DHS Fixation System for Osteoporotic Unstable Intertrochanteric Fractures
指導教授: 張志涵
Chang, Chih-Han
學位類別: 博士
Doctor
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 73
中文關鍵詞: 鋼絲動態式髖部骨螺釘有限元素轉子間不穩定骨折
外文關鍵詞: wire, dynamic hip screw, finite element method, unstable intertrochanteric fracture
相關次數: 點閱:83下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著老年人口的遽增骨質疏鬆問題已成為世界第二大流行病。骨質疏鬆使得骨折發生率增加,且多為不穩定性骨折。2018年光在亞洲就約有112萬案例髖部骨折,一年所需花費約950萬美元。台灣 邵崇榮與賴國安學者統計指出: 2002年髖關節骨折之粗發生率為每10 萬人中有643.7人發生,在所有髖部骨折的老人中轉子間骨折佔一半,且有50 ~ 60%屬於不穩定骨折。

    動態式髖部骨螺釘(DHS)可提供穩定骨折較佳的治療方式,但無法將轉子間不穩定骨折中小轉子骨折碎片作有效固定,使得結構不穩定而發生cut-out及骨釘斷裂導致骨折癒合甚至於無法行走或死亡等併發症,因而增加患者及社會負擔。臨床上常見的一種骨釘失效的狀況,是骨釘與骨頭間介面無法承受固定強度而破壞而造成拔出的併發症,這使得骨折固定變得不穩固而造成骨折無法癒合。鋼絲雖常應用於外科手術,如:全人工關節置換、脊椎固定、膝關節修復,但多需倚靠臨床醫師經驗累積,來找到較佳的固定方式。

    本研究目的為設計及發展鋼絲輔助DHS固定系統與其輔助器械來提供轉子間不穩定骨折(A2.1)之小轉子骨折碎片的固定,進而提升整體結構的穩定度,增加骨癒合及減少併發症發生。其特定目標包含:(1)探討DHS固定骨鬆A2.1骨折的生物力學特性,(2)發展三維鋼絲固定有限元素模型,(3)發展鋼絲固定技術以輔助DHS固定A2.1骨折並探討其生物力學效應,(4)測試不同鋼絲固定法輔助DHS固定A2.1骨折的結構剛性及降伏強度,(5)設計改良型鋼絲導引器械使鋼絲能繞過小轉子骨折碎片和(6)設計改良型DHS固定系統使鋼絲穩固的固定骨折。
    本研究共分為兩個階段。第一階段:(1)使用有限元素法分析DHS固定骨鬆的A2.1骨折以分析骨折碎片的離散情形;(2)基於鋼絲材料為等向、均質且線性彈性的假設條件下,依據不同截面狀況建構不規則的鋼絲有限元素模型;(3)根據(1)分析結果來發展鋼絲固定技術並應用鋼絲有限元素模型來探討不同鋼絲固定法輔助DHS固定骨折的力學效應;(4) 使用萬能材料試驗機測試鋼絲固定法輔助DHS固定骨折的結構剛性及降伏強度。第二階段:(5)改良型Wirepasser的設計包含有兩個中空勾形結構能使鋼絲穿越及一組公母連接器,此連接器可使兩個中空勾形結構結合;(6)改良型的DHS固定系統有助於鋼絲固定,其零件包含有一個具溝槽的側板與輔助蓋板, 傳統的延遲骨釘及皮質骨骨釘所組成。
    有限元素分析結果顯示在A2.1骨折中小轉子碎片會收到肌肉牽引方向朝向內側近端方向移動,根據這樣的趨勢發展出三個固定方式。並使用鋼絲有限元素模型可以成功地用於生物力學的探討,結果顯示三種固定方式均可以達到穩固的效果。在生物力學測試比較中sawbone 結果顯示有鋼絲輔助固定組別的最大承載荷重/剛性/能量均高於單純使用DHS固定,cadaver測試結果顯示在固定荷重下4種鋼絲固定方式均可提升結構剛性以減少位移。Cadaver在只使用DHS固定的疲勞測試結果發生cut-out符合臨床上的併發症。鋼絲輔助器械與鋼絲輔助DHS固定系統也都完成發展與其並使用於本研究的實驗中。
    本研究指出經由鋼絲固定有限元素模擬分析的發展,有助於了解鋼絲固定的生物力學,提供鋼絲輔助DHS固定法作為臨床上治療A2.1骨折較穩定固定方式。小轉子碎片的固定在A2.1骨折固定是很重要的因素,而結合鋼絲輔助固定則可以達到輔助固定的效果以提升骨折結構穩定性。

    Osteoporosis has become the second most common epidemics in the world due to the increase of elderly population. In 2000, International Osteoporosis Foundation (IOF) reported that among 9 million osteoporosis-related bone fractures worldwide, 1.6 million are hip fractures, 1.4 million are vertebral fractures and 1.7 million are forearm fractures.
    In 2018, the total number of hip fractures in Asian countries was 1.12 million and the direct medical cost was USD 9.5 billion [1]. Although using dynamic hip screw(DHS) on stable intertrochanteric hip fracture fixation has been successful and led to fracture healing for the past 20 years, DHS fixation on unstable femur fractures(A2.1) has a failure rate exceeding 50% [2, 3], especially in osteoporotic patients. Bone screw uses for fracture fixation in orthopedic surgery and generally provide solid resistance against unidirectional axial loading forces. In clinical, one of the screw failures is break in the bone-screw interface and cause pullout result due to the weak of bone quality or large pro-drill hole. Screws are therefore at risk of adverse postoperative outcomes secondary to failure of bone fixation, especially in Osteoporosis patient. DHS alone could not provide the stable fixation in A2.1 unstable intertrochanteric fracture. Although the wire fixation is usually incorporated with orthopedic device to enhance the fixation, the methods of the wiring techniques still rely highly on the surgeon’s experiment.

    The purpose of this research is to design and develop a wire reinforced DHS fixation system to provide a more stable fixation for lesser trochanter fragment on osteoporotic TypeA2.1 fracture in order to enhance bone healing and reduce the failure rate. More specifically, this research is aimed to:
    (1) biomechanically investigate the DHS fixation on osteoporotic unstable intertrochanteric fracture ( fracture A2.1); (2) develop a 3-D finite element model of wire fixation; (3) develop wire fixation techniques for lesser trochanter fragment fixation; (4) biomechanically test the wire incorporated with DHS fixation system on fracture A2.1; (5) develop twinned wirepasser for passing wire around the lesser trochanter fragment; and (6) develop a wire incorporated DHS fixation system for A2.1 unstable fracture fixation with wire.

    This research is divided into two phase. In the first stage: (1) finite element method (FEM) is used to analyze the displacement condition of bone fragments for A2.1 fracture with DHS fixation; (2) Develop 3-D FEM mesh model of wire which is tied on irregular surface of bone geometry. Wire is based on ideal physical property of wire with homogenous, isotropic and linear elasticity, 3-D 20-nodes solid elements(SOLID186) (3) based on the outcomes of (1), three different wiring techniques are proposed, and FEM is used to validate these techniques incorporated with DHS fixation on A2.1 fracture; (4) biomechanical property of wire incorporated with DHS fixation on sawbone and cadaver with A2.1 fracture is conducted through universal material machine. In second phase: (5) A twinned wirepasser is developed. The design consists of two cannulated hooks for passing wires and a connector to provide adjustable connection for these hooks; (6) An wire incorporated DHS is designed that contains a side plate with special shallow groove to house wire.

    The results of FE analysis of DHS fixation on A2.1 fracture indicate that the lesser trochanter (LT) fragment is displaced toward the proximal and medial direction by ilipsoas muscle traction. Based upon the direction of fragment migration, this research has developed three wiring techniques. 3-D FEM model of wire has been successfully developed and applied to biomechanical investigation. The results of FE analysis of wire incorporated DHS fixation on A2.1 fracture shows that these three wiring techniques all provide stable fixation without high stress concentration. The results of biomechanical testing between sawbone indicate that the structure maximum load, stiffness and yielding strength have significantly increased when wire is incorporated with DHS fixation. In static biomechanical testing of cadaver femur, the stiffness was compared between five different wire fixation models and then a fatigue model was tested in cycle loading with DHS fixation. Wiring fixation shows enhanced stability in static test results, and the cut-out failure model in the fatigue test that was identical to the clinical failure model “cut-out”. The twinned wirepasser and wire incorporated DHS fixation system have also been developed.
    Lesser trochanteric fragment fixation is a crucial concern in the stability of A2.1 unstable fracture, and the combination of a wiring technique with DHS is beneficial for achieving better stability.
    Keywords: wire, dynamic hip screw, finite element method, unstable intertrochantic fracture

    中文摘要 I Abstract III Acknowledgement VI Table of Content VII List of Tables X List of Figures XI Chapter1. Introduction 1 1.1 Hip fractures 2 1.1.1 Prevalence and incidence of hip fractures 3 1.1.2 Risk factors and Osteoporosis for hip fractures 3 1.1.3 Classification of proximal femur fractures 6 1.1.4 Treatments of proximal femur fracture 8 1.2 Functional anatomy of femur and bone remodeling 11 1.3 Instrumentation of intertrochanteric hip fractures 14 1.3.1 DHS on intertrochanteric hip fractures 14 1.3.2 Biomechanics of DHS on intertrochanteric fractures 15 1.4 Wire fixation in orthopedics 17 1.5 Motivation and Objectives 18 1.5.1 Purpose and specific aims 18 1.5.2 Research Hypothesis and Significances 19 Cahpter2. Material and Methods 20 2.1 FEM of DHS fixation only on A2.1 fractures 21 2.1.1 Femur reconstruction solid model 22 2.1.2 DHS fixation system solid model 23 2.1.3 The DHS fixation on A2.1 fracture model 24 2.1.4 FEA of DHS fixation on A2.1 fracture 25 2.2 Development of wiring techniques for LT fixation on A2.1 fractures 29 2.2.1 Development of 3-D wire fixation FEM modeling 30 2.2.2 Wiring technique for LT fixation 32 2.2.3 FEA of wire incorporated with DHS fixation on A2.1 fractures 33 2.3 Mechanical testing of DHS/wire fixation with A2.1 fracture 34 2.3.1 Sawbone test 34 2.3.2 Cadaver test 36 2.4 Development of twinned wirepassers and wire incorporated with DHS fixation 40 2.4.1 Twinned wirepassers 40 2.3.2 Development of Wire incorporated DHS fixation system 43 Chapter3. Results 46 3.1 FEA of DHS fixation on fracture A2.1 46 3.2 FEA of wire incorporation with DHS fixation on fracture A2.1 48 3.2 Biomechanical test 52 3.2.1 Sawbone test 52 3.2.2 cadaver test 54 3.3 Twinned wirepassers 56 3.4 Wire incorporated DHS fixation design 58 Chapter4 Discussion 59 4.1 FEA of wire incorporated DHS fixation on A2.1 fracture 59 4.2 Biomechanical test of wire incorporated with DHS fixation on A2.1 fracture 61 Chapter5 Conclusion 65 References 67

    1. Cheung CL, Ang SB, Chadha M, Chow ES, Chung YS, Hew FL, Jaisamrarn U, Ng H, Takeuchi Y, Wu CH, et al: An updated hip fracture projection in Asia: The Asian Federation of Osteoporosis Societies study. Osteoporos Sarcopenia, 4(1):16-21,2018.
    2. Haidukewych GJ, Israel TA, Berry DJ: Reverse obliquity fractures of the intertrochanteric region of the femur. J Bone Joint Surg Am, 83-A(5):643-650,2001.
    3. Medoff RJ, Maes K: A new device for the fixation of unstable pertrochanteric fractures of the hip. J Bone Joint Surg Am, 73(8):1192-1199,1991.
    4. [http://www.iofbonehealth.org/]
    5. [https://www.cdc.gov/homeandrecreationalsafety/falls/adulthipfx.html]
    6. Shao CJ, Hsieh YH, Tsai CH, Lai KA: A nationwide seven-year trend of hip fractures in the elderly population of Taiwan. Bone, 44(1):125-129,2009.
    7. Koval KJ, Aharonoff GB, Rokito AS, Lyon T, Zuckerman JD: Patients with femoral neck and intertrochanteric fractures. Are they the same? Clin Orthop Relat Res(330):166-172,1996.
    8. Siegel RS: The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am, 78(9):1447; author reply 1447-1448,1996.
    9. Zain Elabdien BS, Olerud S, Karlstrom G: The influence of age on the morphology of trochanteric fracture. Arch Orthop Trauma Surg, 103(3):156-161,1984.
    10. Holroyd C, Cooper C, Dennison E: Epidemiology of osteoporosis. Best Pract Res Clin Endocrinol Metab, 22(5):671-685,2008.
    11. Cooper C, Campion G, Melton LJ, 3rd: Hip fractures in the elderly: a world-wide projection. Osteoporos Int, 2(6):285-289,1992.
    12. Keene GS, Parker MJ, Pryor GA: Mortality and morbidity after hip fractures. BMJ, 307(6914):1248-1250,1993.
    13. Autier P, Haentjens P, Bentin J, Baillon JM, Grivegnee AR, Closon MC, Boonen S: Costs induced by hip fractures: a prospective controlled study in Belgium. Belgian Hip Fracture Study Group. Osteoporos Int, 11(5):373-380,2000.
    14. Cree M, Soskolne CL, Belseck E, Hornig J, McElhaney JE, Brant R, Suarez-Almazor M: Mortality and institutionalization following hip fracture. J Am Geriatr Soc, 48(3):283-288,2000.
    15. Kiebzak GM, Beinart GA, Perser K, Ambrose CG, Siff SJ, Heggeness MH: Undertreatment of osteoporosis in men with hip fracture. Arch Intern Med, 162(19):2217-2222,2002.
    16. Reginster JY, Gillet P, Ben Sedrine W, Brands G, Ethgen O, de Froidmont C, Gosset C: Direct costs of hip fractures in patients over 60 years of age in Belgium. Pharmacoeconomics, 15(5):507-514,1999.
    17. Cummings SR, Black DM, Rubin SM: Lifetime risks of hip, Colles', or vertebral fracture and coronary heart disease among white postmenopausal women. Arch Intern Med, 149(11):2445-2448,1989.
    18. Gullberg B, Johnell O, Kanis JA: World-wide projections for hip fracture. Osteoporos Int, 7(5):407-413,1997.
    19. Madhok R, Melton LJ, 3rd, Atkinson EJ, O'Fallon WM, Lewallen DG: Urban vs rural increase in hip fracture incidence. Age and sex of 901 cases 1980-89 in Olmsted County, U.S.A. Acta Orthop Scand, 64(5):543-548,1993.
    20. Schroder HM, Petersen KK, Erlandsen M: Occurrence and incidence of the second hip fracture. Clin Orthop Relat Res(289):166-169,1993.
    21. Cooper C, Atkinson EJ, Jacobsen SJ, O'Fallon WM, Melton LJ, 3rd: Population-based study of survival after osteoporotic fractures. Am J Epidemiol, 137(9):1001-1005,1993.
    22. Leibson CL, Tosteson AN, Gabriel SE, Ransom JE, Melton LJ: Mortality, disability, and nursing home use for persons with and without hip fracture: a population-based study. J Am Geriatr Soc, 50(10):1644-1650,2002.
    23. Magaziner J, Lydick E, Hawkes W, Fox KM, Zimmerman SI, Epstein RS, Hebel JR: Excess mortality attributable to hip fracture in white women aged 70 years and older. Am J Public Health, 87(10):1630-1636,1997.
    24. Magaziner J, Simonsick EM, Kashner TM, Hebel JR, Kenzora JE: Predictors of functional recovery one year following hospital discharge for hip fracture: a prospective study. J Gerontol, 45(3):M101-107,1990.
    25. Riggs BL, Melton LJ, 3rd: The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone, 17(5 Suppl):505S-511S,1995.
    26. Kannus P, Parkkari J, Niemi S, Palvanen M: Epidemiology of osteoporotic ankle fractures in elderly persons in Finland. Ann Intern Med, 125(12):975-978,1996.
    27. Kanis JA, Johnell O, De Laet C, Jonsson B, Oden A, Ogelsby AK: International variations in hip fracture probabilities: implications for risk assessment. J Bone Miner Res, 17(7):1237-1244,2002.
    28. Who are candidates for prevention and treatment for osteoporosis? Osteoporos Int, 7(1):1-6,1997.
    29. Melton LJ, 3rd, Atkinson EJ, O'Connor MK, O'Fallon WM, Riggs BL: Bone density and fracture risk in men. J Bone Miner Res, 13(12):1915-1923,1998.
    30. Melton LJ, 3rd, Chrischilles EA, Cooper C, Lane AW, Riggs BL: Perspective. How many women have osteoporosis? J Bone Miner Res, 7(9):1005-1010,1992.
    31. Kanis JA, Johnell O, Oden A, Sembo I, Redlund-Johnell I, Dawson A, De Laet C, Jonsson B: Long-term risk of osteoporotic fracture in Malmo. Osteoporos Int, 11(8):669-674,2000.
    32. Melton LJ, 3rd, Crowson CS, O'Fallon WM: Fracture incidence in Olmsted County, Minnesota: comparison of urban with rural rates and changes in urban rates over time. Osteoporos Int, 9(1):29-37,1999.
    33. Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA, 3rd, Berger M: Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res, 15(4):721-739,2000.
    34. Kanis JA: Diagnosis of osteoporosis and assessment of fracture risk. Lancet, 359(9321):1929-1936,2002.
    35. Cummings SR, Melton LJ: Epidemiology and outcomes of osteoporotic fractures. Lancet, 359(9319):1761-1767,2002.
    36. Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P, Eisman J, Fujiwara S, Garnero P, Kroger H, et al: A meta-analysis of previous fracture and subsequent fracture risk. Bone, 35(2):375-382,2004.
    37. Sornay-Rendu E, Munoz F, Garnero P, Duboeuf F, Delmas PD: Identification of osteopenic women at high risk of fracture: the OFELY study. J Bone Miner Res, 20(10):1813-1819,2005.
    38. Pasco JA, Seeman E, Henry MJ, Merriman EN, Nicholson GC, Kotowicz MA: The population burden of fractures originates in women with osteopenia, not osteoporosis. Osteoporos Int, 17(9):1404-1409,2006.
    39. Szulc P, Munoz F, Duboeuf F, Marchand F, Delmas PD: Bone mineral density predicts osteoporotic fractures in elderly men: the MINOS study. Osteoporos Int, 16(10):1184-1192,2005.
    40. Kanis JA, Delmas P, Burckhardt P, Cooper C, Torgerson D: Guidelines for diagnosis and management of osteoporosis. The European Foundation for Osteoporosis and Bone Disease. Osteoporos Int, 7(4):390-406,1997.
    41. Freedman KB, Kaplan FS, Bilker WB, Strom BL, Lowe RA: Treatment of osteoporosis: are physicians missing an opportunity? J Bone Joint Surg Am, 82-A(8):1063-1070,2000.
    42. Siris ES, Miller PD, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, Berger ML, Santora AC, Sherwood LM: Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA, 286(22):2815-2822,2001.
    43. Nguyen TV, Center JR, Eisman JA: Osteoporosis: underrated, underdiagnosed and undertreated. Med J Aust, 180(5 Suppl):S18-22,2004.
    44. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA: Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet, 353(9156):878-882,1999.
    45. Merrill RM, Weed DL, Feuer EJ: The lifetime risk of developing prostate cancer in white and black men. Cancer Epidemiol Biomarkers Prev, 6(10):763-768,1997.
    46. Hasserius R, Karlsson MK, Nilsson BE, Redlund-Johnell I, Johnell O, European Vertebral Osteoporosis S: Prevalent vertebral deformities predict increased mortality and increased fracture rate in both men and women: a 10-year population-based study of 598 individuals from the Swedish cohort in the European Vertebral Osteoporosis Study. Osteoporos Int, 14(1):61-68,2003.
    47. Kanis JA, Oden A, Johnell O, De Laet C, Jonsson B, Oglesby AK: The components of excess mortality after hip fracture. Bone, 32(5):468-473,2003.
    48. Trombetti A, Herrmann F, Hoffmeyer P, Schurch MA, Bonjour JP, Rizzoli R: Survival and potential years of life lost after hip fracture in men and age-matched women. Osteoporos Int, 13(9):731-737,2002.
    49. Haentjens P, Johnell O, Kanis JA, Bouillon R, Cooper C, Lamraski G, Vanderschueren D, Kaufman JM, Boonen S, Network on Male Osteoporosis in E: Evidence from data searches and life-table analyses for gender-related differences in absolute risk of hip fracture after Colles' or spine fracture: Colles' fracture as an early and sensitive marker of skeletal fragility in white men. J Bone Miner Res, 19(12):1933-1944,2004.
    50. Kanis JA, Johnell O, Oden A, De Laet C, Mellstrom D: Epidemiology of osteoporosis and fracture in men. Calcif Tissue Int, 75(2):90-99,2004.
    51. Eastell R, Boyle IT, Compston J, Cooper C, Fogelman I, Francis RM, Hosking DJ, Purdie DW, Ralston S, Reeve J, et al: Management of male osteoporosis: report of the UK Consensus Group. QJM, 91(2):71-92,1998.
    52. Barrett JA, Baron JA, Karagas MR, Beach ML: Fracture risk in the U.S. Medicare population. J Clin Epidemiol, 52(3):243-249,1999.
    53. Czerwinski E, Kanis JA, Trybulec B, Johansson H, Borowy P, Osieleniec J: The incidence and risk of hip fracture in Poland. Osteoporos Int, 20(8):1363-1367,2009.
    54. Reichert SF: Hip fracture. N Engl J Med, 335(26):1994-1995; author reply 1995-1996,1996.
    55. Fox KM, Magaziner J, Hebel JR, Kenzora JE, Kashner TM: Intertrochanteric versus femoral neck hip fractures: differential characteristics, treatment, and sequelae. J Gerontol A Biol Sci Med Sci, 54(12):M635-640,1999.
    56. G M: The dynamic hip screw implant system by P. Regazzoni, Th. Ruedi, R. Winquist and M. Allgower Springer-Verlag. Pp. 45. Clin Biomech (Bristol, Avon), 1(1):59,1986.
    57. Lindskog DM, Baumgaertner MR: Unstable intertrochanteric hip fractures in the elderly. J Am Acad Orthop Surg, 12(3):179-190,2004.
    58. Abdulkareem IH: A review of tip apex distance in dynamic hip screw fixation of osteoporotic hip fractures. Niger Med J, 53(4):184-191,2012.
    59. Wikipedia:
    60. Wolff J: The law of bone remodelling. Springer Science & Business Media; 2012.
    61. Texhammar R, Colton C: AO/ASIF instruments and implants: a technical manual. Springer Science & Business Media; 2013.
    62. Kyle RF, Wright TM, Burstein AH: Biomechanical analysis of the sliding characteristics of compression hip screws. J Bone Joint Surg Am, 62(8):1308-1314,1980.
    63. Kaufer H: Mechanics of the treatment of hip injuries. Clin Orthop Relat Res(146):53-61,1980.
    64. Cummings SR, Nevitt MC: A hypothesis: the causes of hip fractures. J Gerontol, 44(4):M107-111,1989.
    65. Kannus P, Parkkari J, Niemi S, Pasanen M, Palvanen M, Jarvinen M, Vuori I: Prevention of hip fracture in elderly people with use of a hip protector. N Engl J Med, 343(21):1506-1513,2000.
    66. Marks R, Allegrante JP, Ronald MacKenzie C, Lane JM: Hip fractures among the elderly: causes, consequences and control. Ageing Res Rev, 2(1):57-93,2003.
    67. Fracture and dislocation compendium. Orthopaedic Trauma Association Committee for Coding and Classification. J Orthop Trauma, 10 Suppl 1:v-ix, 1-154,1996.
    68. Watson JT, Moed BR, Cramer KE, Karges DE: Comparison of the compression hip screw with the Medoff sliding plate for intertrochanteric fractures. Clin Orthop Relat Res(348):79-86,1998.
    69. Robert W, James D, Charles C: Rockwood and Green's fractures in adults. Trans Ed Ugur Saylı, 6:929,2001.
    70. Parker MJ, Pryor GA: Gamma versus DHS nailing for extracapsular femoral fractures. Meta-analysis of ten randomised trials. Int Orthop, 20(3):163-168,1996.
    71. Mariani EM, Rand JA: Nonunion of intertrochanteric fractures of the femur following open reduction and internal fixation. Results of second attempts to gain union. Clin Orthop Relat Res(218):81-89,1987.
    72. Chang WS, Zuckerman JD, Kummer FJ, Frankel VH: Biomechanical evaluation of anatomic reduction versus medial displacement osteotomy in unstable intertrochanteric fractures. Clin Orthop Relat Res(225):141-146,1987.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE