簡易檢索 / 詳目顯示

研究生: 葉隆凱
Yeh, Lung-kai
論文名稱: 使用雙行態共振器之2.4/5.2-GHz微波與CMOS 24/60-GHz毫米波雙頻帶通濾波器設計
Design of 2.4/5.2-GHz Microwave and CMOS 24/60-GHz Millimeter-wave Dual-Band Bandpass Filter Using Dual-Behavior Resonator
指導教授: 莊惠如
Chuang, Huey-ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 77
中文關鍵詞: 步階阻抗共振器開路雙行態共振器
外文關鍵詞: SIRs, OC-DBRs
相關次數: 點閱:78下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在射頻前端電路中,濾波器扮演著非常重要的角色,直接影響了整體通訊系統的效能和雜訊,因此,研究並設計高效能的雙頻濾波器為本論文所探討的重點。本論文以開路雙行態共振器(open-circuit dual-behavior resonators, OC-DBRs)為基礎,設計微小化的單頻及雙頻的帶通濾波器,其研究主要分為兩個部分,第一部分為PCB微波濾波器的應用,分別利用兩種不同簡化型的濾波器合成理論設計方法,針對2.4 GHz與5.2 GHz個別的頻帶設計出對稱型與非對稱型濾波器,設計過程中引入三段式步階阻抗共振器來縮小濾波器的面積,將上述分別設計的2.4-GHz與5.2-GHz單頻帶通濾波器結合,最後在Duroid5880,介電係數為2.2的板材上實現雙頻帶通濾波器,第二部分則是利用微帶線的架構來實現TSMC 0.18 μm CMOS製程所設計的24/60-GHz的雙頻帶通濾波器毫米波射頻晶片,引入開路雙行態共振器的概念,每個開路型雙行態共振器皆可獨立地調整,任意的設計出所需的通帶和傳輸零點的位置,但開路端的電容與不連續的電容與電感所造成的影響使得傳輸零點的位置移到更低的頻率,因此需要針對頻率稍作修正。24/60-GHz雙頻帶通濾波器之量測結果顯示: 在23-25 GHz通帶為S21 > -3.7 dB,S11 < -15 dB ,在57-64 GHz通帶為S21 > -2.8 dB,S11 < -10 dB; 在34/40 GHz低頻傳輸零點為 -22/-32 dB與87/88 GHz的高頻傳輸零點為 -46/-48 dB。

    This thesis presents the research on dual-band bandpass filters for 2.4-/5.2-GHz WLAN application and 24-/60-GHz vehicular radar system and WPAN applications. The first part presents some designs based on the stepped impedance resonators (SIRs) theory and the dual-behavior resonator (DBR) concept. The SIRs applied to the dual-band filter design can control second passband by adjusting the impedance ratio and electric lengths of SIRs. The SIRs are also applied to the structure of DBRs. DBRs are composed of the parallel combination of several different open-ended stubs structures. The second part presents the design and implementation of a 24/60-GHz millimeter-wave dual-band on-chip bandpass filter using a 0.18-µm standard CMOS process. The concept of quarter-wave-length stepped impedance resonator (λ/4 SIR) is utilized to realize stopband characteristics at desired frequencies and size reduction. The structure of the open-circuited dual-behavior resonators (OC-DBRs) produces one passband with two transmission zeros on either side. The simulated and measured results are in good agreement. The fabricated CMOS filter chip size is 1.03 0.59 mm2. The measured insertion loss of the passband at 24 and 60 GHz is about 3.6 and 2.8 dB, respectively, and the return loss is better than 15 and 10 dB, respectively. The rejections in the stopbands are all lower than -20 dB.

    第一章 緒論 1 1.1 研究背景與動機 1 1.2 2.4/5-GHz雙頻無線通訊系統簡介 1 1.3 24-GHz汽車雷達系統簡介 2 1.4 短距無線通訊60-GHz WPAN系統簡介 3 1.5 論文架構 5 第二章 微帶線濾波器理論 7 2.1 濾波器簡介 7 2.2 微帶線不連續面等效電路[4] 10 2.2.1 步階阻抗不連續面(Steps in Width) 10 2.2.2 開路端(Open Ends) 11 2.3 兩段式步階阻抗共振器(two-section SIR)的架構分析 12 2.4 三段式步階阻抗共振器(tri-section SIR)[6] 14 2.5 雙行態共振器(Dual-Behavior Resonators, DBRs) 16 2.6 濾波器合成(Filter Synthesis) 18 2.7 阻抗相同的簡化合成方法 21 2.8 阻抗成比例的簡化合成方法[8] 23 2.9 n階濾波器的合成[9] 25 2.10 阻抗轉換器與導納轉換器(Impedance and Admittance Inverters) 26 第三章 2.4/5.2-GHz微帶線單頻與雙頻帶通濾波器設計 31 3.1 等阻抗對稱型2.4-GHz單頻濾波器 31 3.2 等阻抗非對稱型2.4-GHz單頻濾波器 36 3.3 等阻抗對稱型5.2-GHz單頻濾波器 39 3.4 等阻抗非對稱型5.2-GHz單頻濾波器 44 3.5 等阻抗比例對稱型2.4-GHz單頻濾波器 46 3.6 等阻抗比例非對稱型2.4-GHz單頻濾波器 49 3.7 等阻抗比例對稱型5.2-GHz單頻濾波器 51 3.8 等阻抗比例非對稱型5.2-GHz單頻濾波器 54 3.9 2.4/5.2-GHz雙頻帶通濾波器模擬與量測結果 56 第四章 24/60-GHz 毫米波CMOS雙頻帶通濾波器射頻晶片 59 4.1 簡介 59 4.1.1 設計架構 59 4.1.2 設計流程 60 4.2 設計方法 61 4.3 模擬與量測結果 65 4.4 結論 66 第五章 結論 67 附錄A 微帶線濾波器理論 71 附錄B 柴比雪夫低通濾波器(Chebyshev Lowpass filter)係數表 75

    [1] Delphi Corporation, “Consultation paper on the introduction of wireless systems using ultra-wideband technology,” Industry Canada, May 6, 2005.
    [2] http://www.ieee802.org/15/pub/TG3c.html.
    [3] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, 2000.
    [4] D. M. Pozar, Microwave engineering Third edition. Wiley, 2005.
    [5] M. Makimoto and S. Yamashita, “Compact Bandpass Filters using Stepped Impedance Resonators,” Proceedings of the IEEE, Vol. 67, No. 1, pp. 16-19, Jan. 1979.
    [6] D. Packiaraj, M. Ramesh, and A. T. Kalghatgi, “ Design of a tri-section folded SIR filter,” IEEE Microwave Wireless Components Lett., vol. 16, no. 6, May. 2006.
    [7] C. Quendo, E. Rius, and C. Person, “Narrow Bandpass Filters Using Dual-Behavior Resonators,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 734-743, Mar. 2003.
    [8] C. Quendo, E. Rius, and C. Person, “Narrow Bandpass Filters Using Dual-Behavior Resonators Based on Stepped-Impedance Stubs and Different-Length Stubs,” IEEE Trans. Microw. Theory Tech., vol. 52, pp. 1034-1044, Mar. 2004.
    [9] R. E. Collin, Foundations for Microwave Engineering Second Edition.
    [10] C.-F. Chen, T-Y. Huang, and R.-B. Wu, “Compact Microstrip Cross-Coupled Bandpass Filters Using Miniaturized Stepped Impedance Resonators,” in Proc. Asia-Pacific Microwave Conf. vol. 1, Dec. 2005.
    [11] H. Zhang and K. J. Chen, “ A Tri-Section Stepped-Impedance Resonator for Cross-Coupled Bandpass Filters,” IEEE Microwave Wireless Components Lett., vol. 15, no. 6, Jun. 2005.
    [12] M. Makimoto and S. Yamashita, “Bandpass Filters Using Parallel Coupled Stripline Stepped Impedance Resonators,” IEEE Trans. Microw. Theory Tech., vol. 28, no. 12, pp. 1413-1417, Dec. 1980.
    [13] Y.-Z. Wang and M.-L. Her, ”Compact microstrip bandstop filters using stepped-impedance resonator (SIR) and spur-line sections,” IEE Proc.-Microw. Antennas Propag., vol. 153, no. 5, Oct. 2006.

    下載圖示 校內:2009-09-10公開
    校外:2009-09-10公開
    QR CODE