| 研究生: |
林武國 Lin, Wu-Kuo |
|---|---|
| 論文名稱: |
使用可能性評估過程產生虛擬樣本以求解製造系統初期的小樣本學習問題 Employing a Possibility-Based Surviving Procedure to Generate Virtual Samples to Solve the Small-Data-Learning Problem in the Early Stages of Manufacturing Systems |
| 指導教授: |
利德江
Li, Der-Chiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 小樣本學習 、M5’模式樹 、趨勢擴散 、虛擬樣本 、多層陶瓷電容器 |
| 外文關鍵詞: | Small data set learning, multi-layer ceramic capacitor, trend-diffusion, virtual sample |
| 相關次數: | 點閱:136 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在全球化的浪潮下,工業產品的生命週期變得越來越短,特別是在電子產業。新產品上市的時間已成為一個公司拓展市佔率的核心能力。為了縮短產品設計到批量生產的時間,工程師必須經常在有限資訊的不確定條件下作出決定。雖然機器學習方法可以幫助尋找有用的資訊,但欲建立穩健的預測模式時,其對於所需的最少訓練樣本數是必要的,且由於在產品製造初期並沒有足夠的資料,因此其所建構之模式往往是較不可信賴的。本研究引用Li等人於2009年所提出之整體趨勢擴散技術與其所應用之多層陶瓷電容器案例,以可能性評估過程修訂其虛擬值產生方式,使用M5'模式樹建構一個準確的模型,並以樹狀結構具體呈現所學習到的知識,用以協助批量生產前縮短交貨時間。試驗結果顯示,在試產期間使用少量有限的資料去快速開發一個生產模式是可行的。
Product life cycles are becoming shorter and shorter owing to the increasing pressure of global competition. However, companies may dominate their target market if they can shorten their production cycle time to accelerate their new products coming to market. While trying to shorten the cycle time from product design to mass production, firms often need to make decisions with limited data at each early developmental stage. Thus although machine learning algorithms can help derive meaningful information for decision makers, the number of training samples is always a key factor in determining their knowledge acquisition capability. This research develops a Possibility-Based Surviving Procedure to Generate Virtual Samples to Solve the Small-Data-Learning Problem in pilot run stage and takes the multi-layer ceramic capacitor case (Li et al., 2009) as an example to figure out a precise model which concretely represents the learned knowledge of the process to help shorten the lead-time before mass production. The results reveal that it is possible to rapidly develop a model of production with limited data from pilot runs.
Anthony, M., and Biggs, N. (1997). Computational Learning Theory. New York: Cambridge University Press.
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and Regression Trees. Belmont, CA:Wadsworth International Group.
Dougherty, J., Kohavi, R., and Sahami, M. (1995). Supervised and unsupervised discretization of continuous features. Proceedings of the 12th International Conference on Machine Learning, 194-202, San Francisco, Morgan Kaufmann.
Huang, C. F., Moraga, C. (2004). A diffusion-neural-network for learning from small samples. International Journal of Approximate Reasoning, 35, 137-161.
Huang, C. F. (1997). Principle of information. Fuzzy Sets and Systems, 91, 69-90.
Ivănescu, V. C., Bertrand, J. W. M., Fransoo, J. C., and Kleijnen, J. P. C. (2006). Bootstrapping to solve the limited data problem in production control: an application in batch process industries. Journal of the Operational Research Society, 57(1), 2-9.
Jang, J. S. R. (1993). ANFIS: adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man and Cybernetics, 23, 665-685.
Lanouette, R., Thibault, J., and Valade, J. L. (1999). Process modeling with neural networks using small experimental datasets. Computers & Chemical Engineering, 23 (9), 1167-1176.
Li, D. C., Chen, L. S., and Lin, Y. S. (2003). Using functional virtual population as assistance to learn scheduling knowledge in dynamic manufacturing environments. International Journal of Production Research, 41(17), 4011-4024.
Li, D. C., and Lin, Y. S. (2006). Using virtual sample generation to build up management knowledge in the early manufacturing stages. European Journal of Operational Research, 175, 413-434.
Li, D. C., Tsai, T. I., and Shi, S. (2009). A prediction of the dielectric constant of multi-layer ceramic capacitors using the mega-trend-diffusion technique in powder pilot runs: Case study. International Journal of Production Research, 19, 51-69.
Li, D. C., Wu, C., and Chen, F. M. (2005). Using Data-fuzzification Technology in Small Data Set Learning to Improve FMS Scheduling Accuracy. International Journal of Advanced Manufacturing Technology, 27, 321-328.
Li, D. C., Wu, C., Tsai, T. I., and Chang, F. M. (2006). Using Mega-Fuzzification and Data Trend Estimation in Small Data Set Learning for Early FMS Scheduling Knowledge. Computers & Operations Research, 33, 1857-1869.
Li, D. C., Wu, S. S., Tsai, T. I., and Lina, Y. S. (2007). Using mega-trend-diffusion and artificial samples in small data set learning for early flexible manufacturing system scheduling knowledge. Computers and Operations Research, 34, 966-982.
Niyogi, P., Girosi, F., and Poggio, T. (1998). Incorporating prior information in machine learning by creating virtual examples. Proceedings of the IEEE, 86(11), 275-298.
Oniśko, A., Druzdzel, M. J., and Wasyluk, H. (2001). Learning Bayesian network parameters from small data sets: application of Noisy-OR gates. International Journal of Approximate Reasoning, 27(2), 165-182.
Quinlan, J. R. (1992). Learning with continuous classes. Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, 343-348.
Roiger, R. J., and Geatz, M. W. (2003). Data Mining: A Tutorial-Based Primer. New York: Addison Wesley.
Thomas, M., Kanstein, A., and Goser, K. (1997). Rare fault detection by possibilistic reasoning. Computational Intelligence - Theory and Applications, 1226, 294-298.
Wang, Y., and Witten, I. H. (1997). Inducing model trees for continuous classes, Proceedings of Poster Papers of the 9th European Conference on Machine Learning, 128-137.
Willemain, T. R., Bress, R. A., and Halleck, L. S. (2003). Enhanced simulation inference using bootstraps of historical inputs. IIE Transactions, 35(9), 851-862.
Witten, I. H., and Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques (2nd ed.). San Francisco: Morgan Kaufmann.
Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241-259.