| 研究生: |
張瑞山 Chang, JUI-SAN |
|---|---|
| 論文名稱: |
感性知識萃取法於空間設計應用之研究 An Application of Kansei Knowledge Extraction in Spatial Design |
| 指導教授: |
李昇暾
Li, Sheng-Tun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 感性工學 、感性詞彙萃取 、文字探勘 、中文斷詞 、特徵擷取 |
| 外文關鍵詞: | Kansei, Text Mining, Chinese word segmentation, Feature extraction |
| 相關次數: | 點閱:140 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今在多數的設計產業已經逐漸發現到客戶感性需求的當下,同為設計產業的空間設計領域,卻還停留在傳統的模式裡,現況是設計師用個人經驗的方式揣測需求,然隨著利潤逐漸的下降,加上競爭者於設計上的機能性與建造技術的接近,風險正逐漸的提升。綜觀來看唯有跟隨其他設計產業的趨勢,開始正視一般顧客的感性需要,有效的將多數顧客重視的需求萃取並融入設計之中,以獲取顧客情感認同進而購置。而本研究以過去十多年來,已成功實現結合客戶感受需要於多項產業產品上的感性工學方式為藍圖,藉由蒐集網路口碑資料,透過文字探勘的方式,擷取客戶需求含意的詞彙,再經過分析彙整取得最終的感性詞彙。期望在未來可使用本研究的方式,善用網路的資源以取得多數顧客的感受需要外,可以進一步結合於產品之中,另一方面能讓設計師更貼近顧客的感性需求,縮短雙方溝通上的差異,協助設計師走出象牙塔,顧客也可以能夠享受符合自身感性需要的好設計。
The feeling and self-awareness with the rise of individual consciousness is growing up. For catching the customers' attention design nowadays needs to integrate the feeling of the customers. In addition, people are willing to start to share their own thought and feeling by posting them on the Internet forums and blogs to show their likes and dislikes realistically. By combining these two parts through the analysis of Electronic Words-of-Mouth this research would get the anticipation of getting improvement and speeding on the extraction of Kansei keywords which was extracted by interview or question are. In addition, designers would leave far away the ivory tower to be close to the customer's emotional needs and reduce the differences in communication. Customers could also enjoy good design that meets their emotional needs.
參考文獻
一、 中文文獻
中央研究院詞庫小組,中央研究院資訊科學所詞庫小組中文斷詞線上服務,http://ckipsvr.iis.sinica.edu.tw/。
王琮惠(2004) ,居家空間室內設計意象之研究,私立中原大學室內設計學系研究所碩士論文。
王肇儀(2008),感性工學為基礎之人工表情分析,中央大學光機電工程研究所學位論文。
江義平、溫演福、廖奕翔、陳靖翔與陳佳駿(2012),網路文字探勘技術運用於智慧型手機口碑之分析研究,中華民國資訊管理學會研討會論文集101,1990-2001。
吳怡瑾 與 林書偉(2010),基於專案屬性資訊之知識探勘與再利用平台發展,圖書資訊學刊, 8(1) ,97-136。
周彥宇(2011) ,居家空間舒適因素構成。臺灣師範大學工業教育學系學位論文,1-150。
周濟群 與 連子杰(2011),運用文字探勘與 XBRL 技術提升企業資訊擷取與整合效益之研究,當代會計, 12(1) , 85-114。
林俊良(2005),基礎設計,藝風堂,臺北市。
林政輝 與 洪智力(2009),個人化美食口碑推薦機制,中原大學資訊管理研究所碩士論文。
林哲煒(2010),網路口碑與產品銷售之關係探討:以Amazon.com為例。國立政治大學企業管理研究所碩士論文。
林振陽、蕭世文、羅際鋐 與 柯雅娟(2009),應用模糊理論於創意形態設計之發展,應用藝術與設計學報 200907,25-37。
洪智力 與 林柏宇(2009),一個文字探勘結合投資者判讀消息面經驗的股市預測模型,第二十屆國際資訊管理學術研討會。
洪黛芬 與 聶志高(2013),商店外觀感性意象之語意評價研究-造形特徵與意象關聯性之探討,建築學報 84,55-75。
范有寧、黃心惟 與 陳靜枝(2012),以數位口碑為基礎之流行性商品銷售預測模式,資訊管理學報19卷1期,27-50。
留淑芳(2003),網路口耳相傳訊息特性及接受者行為特質對態度形成之影響,國立台灣大學商學研究所博士論文。
張育銘 與 鄧怡莘(2007),由設計意圖中淺談感性工學,http://email.ncku.edu.tw/ ~em50190/ncku/196/d/d04.htm。
張景新(2009),〈「自然語言處理」暨「機器翻譯系統」實驗室是幹什麼的??〉,http://nlp.csie.ncnu.edu.tw/~shin/。
戚玉樑 與 時立哲(2012),以模糊本體為基礎的餐飲推薦系統,IMP 2012 第十八屆資訊管理暨實務研討會。
陳志堯 (2012) ,塑膠質感在視觸覺上之感性研究,成功大學工業設計學系碩博士班學位論文, (2012 年) 。
陳怡廷 與 欒錦榮(2012),自然語言處理在口碑研究的應用,中華傳播學刊,(22), 259-289。
陳耀茂(2012),企業研究方法: 感性之量化分析,新頁圖書。
陶曉嫚(2012),讓設計與消費者的心聲共鳴:長町三生:「感性工學是產品熱銷的金鑰!」,工業技術與資訊月刊254期2012年12月號,4-7。
甯格致 與 賴昆棋(2010),基於網路社群之旅遊經驗及對應情境之情感意見分析研究, ROCLING論文集2010,320-334。
黃台生(2007),產品造形意象元素設計系統之研究-以行動影音產品為例,設計學報12卷第4期,2007年12月,59-77。
黃詰仁(2010),淺談文字探勘技術,電腦科技電子報第158期,http://www.syscom.com.tw/ePaper_Content_EPArticledetail.aspx?id=72&EPID=158&j=3&HeaderName=研發新視界。
黃慶輝(2012),室內物業之服務動線管理與更新:以產後護理之家為例,物業管理學報,3(2),81-91頁。
楊裕富(2002),空間設計-概論與設計方法。田園城市文化。台北市。
詹智翔(2007) ,感性工程-人工表情之研發,中央大學光機電工程研究所學位論文,1-56。
賴明助(2010),運用文字探勘技術於顧客問題分類之研究-以某 ERP 軟體公司為例,靜宜大學資訊碩士在職專班學位論文。
鍾任明、李維平 與 吳澤民(2005),運用文字探勘於日內股價漲跌趨勢預測之研究。
羅淑娟、柯秀奎 與 林晶璟(2008),綱路服務品質探勘與管制 Web-Service Data Quality Mining and Control,交大管理學報, 28(1) , 251-268。
吳莉君(2010) 譯,Michael Kroeger,設計是什麼?:保羅.蘭德給年輕人的第一堂啟蒙課,原點出版社,台北市。
羅雅萱(2007) 譯,Terence Conran & Max Fraser,設計大師談設計,原點出版社,台北市。
二、 外語文獻
Abbasi, A., Chen, H., & Salem, A.(2008). Sentiment analysis in multiple languages: Feature selection for opinion classification in Web forums. ACM Transactions on Information Systems(TOIS), 26(3), 12.
Allsop, D. T., Bassett, B. R., & Hoskins, J. A.(2007). Word-of-mouth research: principles and applications. Journal of Advertising Research, 47(4), 398–411.
Bell, P. A., Greene, T. C., Fisher, J. D., and Baum, A.(2005). Environmental Psychology. Fifth edition, London: Psychology Press.
Berry Michael, W.(2004). Automatic Discovery of Similar Words. Survey of Text Mining: Clustering, Classification and Retrieval”, Springer Verlag, New York, 200, 24-43.
Blackwell, R. D., Miniard, P. W., & Engel, J. F.(2006). Consumer behavior, 10.Aufl., Mason.
Cheng, W. L. (2005). The Research on A Single Classifier in Text Classification of Multi-Class (Doctoral dissertation, Master Thesis, Dept. of Information Management, Ming Chuan University).
Gelb, B. D., & Sundaram, S.(2002). Adapting to word of mouse. Business Horizons, 45(4), 21-25.
Gilly, M. C., Graham, J. L., Wolfinbarger, M. F., & Yale, L. J.(1998). A dyadic study of interpersonal information search. Journal of the Academy of Marketing Science, 26(2), 83-100.
Goldsmith, R. E., & Horowitz, D.(2006). Measuring motivations for online opinion seeking. Journal of interactive advertising, 6(2), 1-16.
Gupta, V., & Lehal, G. S.(2009). A survey of text mining techniques and applications. Journal of Emerging Technologies in Web Intelligence, 1(1), 60-76.
Guralnik. V., & Karypis. G.,(2001). A scalable algorithm for clustering protein sequences, Proc.Workshop Data Mining in Bioinformatics(BIOKDD), 73–80.
Hanson, W.(2000). Principles of internet marketing. Cincinnati,OH: South-Western College Publishing.
Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D.(2004). Electronic word-of-mouth via consumer-opinion platforms: what motivates consumers to articulate themselves on the internet?. Journal of interactive marketing, 18(1), 38-52.
Heskett, J.(2005). Design: A very short introduction. Oxford University Press.
Hu, N., Liu, L., & Zhang, J.(2007, January). Analyst forecast revision and market sales discovery of online word of mouth. In System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International Conference on(210c). IEEE.
Hung, C.(2008). A personalized word of mouth recommender model.Webology, 5(3).
Jain, G., Ginwala, A., & Aslandogan, Y. A.(2004, November). An approach to text classification using dimensionality reduction and combination of classifiers. In Information Reuse and Integration, 2004. IRI 2004. Proceedings of the 2004 IEEE International Conference on(564-569). IEEE.
Jian-mei, Y., Xi-zhong, H., Dong, Z., & Sheng-tao, Z.(2006, October). The complex network analysis of competitive relationships between manufacturers in Foshan Ceramic Industry Cluster. In Management Science and Engineering, 2006. ICMSE'06. 2006 International Conference on(1020-1023). IEEE.
Ju, H., & Nakamori, Y.(2012). Products recommendations using emotional information. Journal of Systems Science and Systems Engineering, 21(2), 161-173.
Kataniwa, M., & Kumakura, S. (2007) A Method for Analyzing Car Driver’s Sensitivity to Stress and Comfort.
Lee, S., & Kim, H. J.(2008, September). News keyword extraction for topic tracking. In Networked Computing and Advanced Information Management, 2008. NCM'08. Fourth International Conference on(Vol. 2, 554-559). IEEE.
Lee, S., Baker, J., Song, J., & Wetherbe, J. C.(2010, January). An empirical comparison of four text mining methods. In System Sciences(HICSS), 2010 43rd Hawaii International Conference on(1-10). IEEE.
Mavridou, E., Kehagias, D. D., Tzovaras, D., & Hassapis, G.(2013). Mining affective needs of automotive industry customers for building a mass-customization recommender system. Journal of intelligent manufacturing,24(2), 251-265.
Nagamachi, M.(1995). Kansei engineering: a new ergonomic consumer-oriented technology for product development. International Journal of industrial ergonomics, 15(1), 3-11.
Norman, D. A.(2002). The design of everyday things. New York: Basic books.
Ogawa, T., Nagai, Y., & Ikeda, M.(2009). An ontological approach to designers’ idea explanation style: Towards supporting the sharing of kansei-ideas in textile design. Advanced Engineering Informatics, 23(2), 157-164.
Pang, B., Lee, L., & Vaithyanathan, S.(2002, July). Thumbs up?: sentiment classification using machine learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10( 79-86). Association for Computational Linguistics.
Piatetsky-Shapiro, G. F., W.(1991). Knowledge Discovery in Databases(Eds.). CA: AAAI/MIT Press.
Roy, R., Goatman, M., & Khangura, K.(2009). User-centric design and Kansei Engineering. CIRP Journal of Manufacturing Science and Technology, 1(3), 172-178.
Saegusa, T., & Maruyama, T.(2007, December). Real-time segmentation of color images based on the K-means CLUSTERING on FPGA. In Field-Programmable Technology, 2007. ICFPT 2007. International Conference on( 329-332). IEEE.
Salton, G., & Buckley, C.(1988). Term-weighting approaches in automatic text retrieval. Information processing & management, 24(5), 513-523.
Schauland, S., Kummert, A., Park, S. B., Iurgel, U., & Zhang, Y.(2006, September). Vision-Based Pedestrian Detection--Improvement and Verification of Feature Extraction Methods and SVM-Based Classification. In Intelligent Transportation Systems Conference, 2006. ITSC'06. IEEE( 97-102). IEEE.
Schutte, S., & Eklund, J.(2003). Product design for the heart and soul.Linkoping University, Sweden.
Shi Fuqian, Sun Shouqian, Xu Jiang(2008). Theory and Its Application to Product Kansei Evaluation System.. Journal of Computer-Aided Design & Computer Graphics, V01, 20, No, 3, Mar, 2008, 361-365.
Shi, F., Sun, S., & Xu, J.(2012). Employing rough sets and association rule mining in KANSEI knowledge extraction. Information Sciences, 196, 118-128.
Shimizu, Y., Sadoyama, T., Kamijo, M., Hosoya, S., Hashimoto, M., Otani, T., ... & Inui, S.(2004). On-demand production system of apparel on the basis of engineering. International journal of clothing science and technology, 16(1/2), 32-42.
Singhal, Amit, Gerard Salton, and Chris Buckley.(1995). Length normalization in degraded text collections. Cornell University.
Sullivan, D.(2001). Document warehousing and text mining: techniques for improving business operations, marketing, and sales. John Wiley & Sons, Inc.
Sun, T., Youn, S., Wu, G., & Kuntaraporn, M.(2006). Online Word‐of‐Mouth(or Mouse): An Exploration of Its Antecedents and Consequences. Journal of Computer‐Mediated Communication, 11(4), 1104-1127.
Tan, S., & Zhang, J.(2008). An empirical study of sentiment analysis for chinese documents. Expert Systems with Applications, 34(4), 2622-2629.
Trafalis, T. B., & Ince, H.(2000). Support vector machine for regression and applications to financial forecasting. Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on(Vol. 6, 348-353). IEEE.
Yan, H. B., Huynh, V. N., Murai, T., & Nakamori, Y.(2008). Kansei evaluation based on prioritized multi-attribute fuzzy target-oriented decision analysis. Information Sciences, 178(21), 4080-4093.
Yan, H., & Nakamori, Y. (2008). A Probability-Based Approach to Consumer Oriented Evaluation of Traditional Craft Items Using Kansai Data. In Interval/Probabilistic Uncertainty and Non-Classical Logics ( 326-340). Springer Berlin Heidelberg.
Xu, X., Hsiao, H. H., & Wang, W. W. L. (2012). FuzEmotion as a backward kansei engineering tool. International Journal of Automation and Computing,9(1), 16-23.
Zeisel, J. (2006). Inquiry by design: Environment behavior neuroscience in architecture, interiors, landscape, and planning. Updated and Revised edition, New York: W. W. Norton.
Zhong, W., Altun, G., Harrison, R., Tai, P. C., & Pan, Y. (2005). Improved K-means clustering algorithm for exploring local protein sequence motifs representing common structural property. NanoBioscience, IEEE Transactions on, 4(3), 255-265.
長町三生(1989)。感性工学―感性をデザインに活かすテクノロジー。東京都 : 海文堂出版株式會社。
長町三生(1992)。快適科学: 人間側からみた商品づくりへ。東京都 : 海文堂出版株式會社。