| 研究生: |
曾中慶 Tseng, Chong-Ching |
|---|---|
| 論文名稱: |
模具彈簧用異形線材熱軋製程開發與實驗驗證 Shape rolling process development and experiments for die springs |
| 指導教授: |
何旭彬
Ho, Shi-Pin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 異形線 、熱軋 、有限元素法 、輥路設計 |
| 外文關鍵詞: | shaped wire, hot rolling, finite element method, roll pass design |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,傳統產業的環保議題與高勞力成本逐漸受到重視,其中傳統油淬回火異形線材進行抽線製程前必須先進行球化退火、酸洗、皂化,至少反覆進行三至四次,直到圓形截面的線材被塑性加工成異形截面的線材,因此加工成本高、耗時且會造成環境污染。
軋輥輥路設計是異形材熱軋製程中的核心部份之一,軋輥輥路設計的主要目的是要確保完軋後成品的剖面正確無虞且表面沒有缺陷存在。本文採用二維熱固耦合廣義平面應變有限元素法來解決上述複雜的異形材熱軋輥路設計問題,尤其在進行多道次異形材熱軋模擬時,二維廣義平面應變法可以節省許多電腦計算所需時間與記憶體。
本文研究的目的旨在解決上述異形材加工製程的問題,文中研究如何結合異形材熱軋製程與線上熱處理生產異形線材,熱軋實驗過程以電磁感應加熱設備將圓形合金鋼線加熱至沃斯田鐵溫度,再利用懸臂式軋機以垂直與水平方式進行反覆塑性加工成異形截面,立即進行線上淬火與回火處理,將異形線之組織從波來鐵轉變成回火麻田散鐵,所有熱軋與熱處理製程可以在同一條產線上完成
本文所開發的異形線材熱軋製程相較於傳統的加工製程,具有高效率、低成本與合乎環保等優點,因為製程中完全不需進行球化退火、酸洗與皂化。此外,合金鋼線利用電磁感應加熱方式加熱時間只需幾秒鐘,因此不會造成鋼線表面發生嚴重氧化與脫碳。
最後,本文進行各種機械性能測試、金相實驗與前沃斯田鐵晶粒觀察,並且將異形線材卷繞成螺旋狀之模具彈簧進行耐久壽命測試,測試結果證實本文所開發之異形線材耐久壽命符合需求。
In recent years, environmental issues and high labor costs for traditional industry have been receiving increasing attention. One example is the manufacturing process of conventional oil tempered shaped wire that is high cost, time-consuming and polluting. The process of annealing or spheroidizing needs to be carried out before the shaped wire drawing processes, and acid pickling, phosphate coating, and wire drawing are required three or four times in sequence until the circular section is formed into a trapezoidal section.
The roll pass design is an essential part of the shape rolling process, and the primary goal of the roll pass design is to ensure that the finished products have the correct profile, and are free of surface defects. In this study, we adopted the 2D generalized plane strain finite element method with thermal-mechanical coupling to solve the complicated shape rolling problem, because the 2D generalized plane strain approach saves computing time and computer memory, which is very useful when several subsequent passes are simulated.
The aim of this study is therefore to attempt to solve the problems of producing shaped wire. This study investigates the shape rolling process combined with the in-line induction heat treatment process for tempered shaped wire. The round wire was heated to austenitic temperature using in-line induction heating equipment, and the wire was formed into a trapezoidal shape using a tandem cantilever type rolling mill, then quenched in water and tempered. Hence, the entire sequence was carried out in a single procedure with an automated line。
The advantages of the manufacturing process of this study are highly efficient, low cost, and more environmentally friendly than the conventional process, because there is no need for acid pickling, annealing or spheroidizing and phosphate coating. And the wire is heated to austenitic temperature by induction heating in a few seconds, so the heating process does not cause oxidation or decarburization on the surface of the steel wire.
Finally, it is evidenced that the mechanical properties, microstructure and the fatigue testing results of the shaped wire all satisfied the requirements.
[1] A. M. Wahl, Mechanical Springs, McGraw-Hill, 1963.
[2] S. Kobayashi, S.I. Oh and T. Altan, Metal Forming and the Finite Element Method, Oxford University Press, New York, 1989.
[3] Y. Yamada, Materials for Springs, Japan Society of Spring Engineers and Springer, 2000.
[4] W. D. Callister, Materials Science and Engineering: An Introduction, 3rd ed., John Wiley & Sons, New York, 1994.
[5] Z. Wusatowski, Fundamentals of Rolling. Pergamon, London, 1969.
[6] S. Kalpakjian, Manufacturing Engineering and Technology, 3rd ed., Addison-Wesley Publishing Company, New York, 1995.
[7] S. Zinn and S. L. Semiatin, Elements of Induction Heating: Design, Control, and Applications, Electric Power Research Institute, 1988.
[8] T. von Karman, “On the Theory of Rolling”, Journal of Applied Mathematics and Mechanics, Vol. 5, pp. 130-141, 1925.
[9] A. Nadai, “The Force Required for Rolling Steel Strip under Tension”, Journal of Applied Mechanics, Vol. 6, pp. 54-62, 1939.
[10] E. Orowan, “The Calculation of Roll Pressure in Hot and Cold Flat Rolling”, Proceedings of the Institution of Mechanical Engineers, Vol. 150, No. 1, pp. 140-167, 1943.
[11] K. J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall Inc., New Jersey, 1982.
[12] T. Belytschko, W. K. Liu and B. Moran, Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons Ltd., 2001.
[13] M. A. Crisfield, Non-linear Finite Element Analysis of Solids and Structures – Volume 1: Essentials, John Wiley & Sons, Chichester, 2001.
[14] M. A. Crisfield, Non-linear Finite Element Analysis of Solids and Structures – Volume 2: Advanced Topics”, John Wiley & Sons, Chichester, 2003.
[15] O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, 6th ed., Butterworth-Heinemann, 2005.
[16] J. N. Reddy, An Introduction to the Finite Element Method, 3rd ed., McGraw Hill, 2006.
[17] G. J. Li and S. Kobayashi, “Rigid-Plastic Finite-Element Analysis of Plane Strain Rolling”, Journal of Engineering for Industry, Vol. 104, pp. 55-64, 1982.
[18] K. F. Kennedy, T. Altan and G. D. Lahoti, “Computer-Aided Analysis of Metal Flow Stresses and Roll Pass Design in Rod Rolling”, Iron and Steel Engineer, Vol. 6, No. 6, pp. 50-54, 1983.
[19] K. Sevenler, P. S. Raghupathi and T. Altan, “Spread and Bulging in Bar and Rod Rolling Using Flat Rolls”, Iron and Steel Engineer, Vol. 63, No. 3, pp. 57-62, 1986.
[20] K. Mori and K. Osakada, “Finite Element Simulation of Three-Dimensional Deformation in Shape Rolling”, International Journal for Numerical Methods in Engineering, Vol. 30, No. 8, pp. 1431-1440, 1990.
[21] J. J. Park and S. I. Oh, “Application of Three Dimensional Finite Element Analysis to Shape Rolling Processes”, Journal of Engineering for Industry, Transactions of ASME, Vol. 112, No. 1, pp. 36-46, 1990.
[22] K. Komori, “Rigid-plastic Finite-element Method for Analysis of Three-dimensional Rolling that Requires Small Memory Capacity”, International Journal of Mechanical Sciences, Vol. 40, No. 5, pp. 479-491, 1998.
[23] L. S. Bayoumi, “Flow and Stresses in Round-Oval-Round Roll Pass Sequence”, International Journal of Mechanical Sciences., Vol. 40, No. 12, pp. 1223-1234, 1998.
[24] S. H. Hsiang and S. L. Lin, “Study of a 3-D FEM Combined with the Slab Method for Shape Rolling”, Journal of Materials Processing Technology, Vol. 100, No. 1, pp. 74-79, 2000.
[25] H. J. Kim, T. H. Kim and S. M. Hwang, “A New Free Surface Scheme for Analysis of Plastic Deformation in Shape Rolling”, Journal of Materials Processing Technology, Vol. 104, No. 1, pp. 81-93, 2000.
[26] M. Glowacki, “The Mathematical Modelling of Thermo-mechanical Processing of Steel during Multi-pass Shape Rolling”, Journal of Materials Processing Technology, Vol. 168, No. 2, pp. 336-343, 2005.
[27] R. Iankov, “Finite Element Simulation of Profile Rolling of Wire”, Journal of Materials Processing Technology. Vol. 142, No. 2, pp. 355-361, 2003.
[28] C. Sakata, Y. Murayama and K. Kinugasa, 中華民國專利I235768, 2005.
[29] 曾中慶, “高值化異形截面彈簧設計與線材軋延製程開發簡介”, 車輛工業月刊, pp. 60-63, 2008.
[30] 曾中慶 and 楊曉強, “異形線材等溫熱軋延成形製程模擬與實驗”, 模具公會2009年模具技術論文, 2009.
[31] 曾中慶 and 謝宗憲, “線性滑軌粗胚熱軋製程研究與實驗”, 中華民國29屆中國機械工程學會, 2012.
[32] W. F. Hosford and R. M. Caddell, Metal Forming: Mechanics and Metallurgy, Prentice-Hall Inc., 1983.
[33] J. E. Shigley and C. R. Mischke, Mechanical, Mechanical Engineering Design, 6th ed., McGraw-Hill Inc., New York, 2003
[34] A. P. Boresi and R. J. Schmidt, Advanced Mechanics of Materials, 6th ed., John Wiley & Sons, New York, 2003.
[35] A. Mendelson, Plasticity: Theory and Application, Macmillan, New York, 1983.
[36] J. Chakrabarty, Theory of Plasticity, Elsevier Butterworth-Heinemann, 2006.
[37] R. Courant, “Variational Methods for the Solution of Problems of Equilibrium and Vibrations”, Bulletin of the American Mathematical Society, Vol. 49, No. 1, pp. 23, 1943.
[38] M. J. Tuner, R. W. Clough, H. C. Martin and L. J. Topp, “Stiffness and Deflection Analysis of Complex Structures”, Journal of Aeronautical Science, Vol. 23, No. 9, pp. 805-823, 1956.
[39] R. W. Clough, ”The Finite Element Method in Plane Stress Analysis”, Proceedings of 2nd conference on electronic Computation, Pittsburgh: American Society of Civil Engineers, pp. 345-378, 1960.
[40] MSC. MARC, Theory and User Information, MSC Software Corporation, Vol. A, 2003.
[41] W. Trinks, Roll Pass Design, The Penton Publishing Co., 1934.
[42] 瀬戸 芳樹, 曽我 栄市, 内野 勝芳 and川嵜 一博, “誘導加熱熱処理した冷間成形ばね用高強度鋼線について”, ばね論文集, No. 27, pp. 28-34, 1982.
[43] 川嵜 一博, 瀬戸 芳樹 and山崎 隆雄, “誘導加熱熱処理した冷間成形コイルばね用高強度鋼線の特性”, 鐵と鋼, Vol. 71, No. 1, pp. 100-106, 1985.
[44] 川嵜 一博, 千葉 貴世, 高岡 憲久 and 山崎 隆雄, “誘導加熱焼入れ焼もどししたばね鋼の組織と機械的性質の特徴”, 鐵と鋼, Vol. 73, No. 16, pp. 2290-2297, 1987.
[45] G. F. Vander Voort, Atlas of Time-Temperature Diagrams for Irons and Steels, ASM International, 1991.
[46] http://www.csc.com.tw/csc_e/pd/spec/mlg_std2_23.pdf
[47] S. H. Kang and Y. T. Im, “Three-Dimensional Finite-Element Analysis of the Quenching Process of Plain-Carbon Steel with Phase Transformation”, Metallurgical and Materials Transactions A, Vol. 36, No. 9, pp. 2315-2325, 2005.
[48] J. G. Lenard, M. Pietrzyk and L. Cser, Mathematical and Physical Simulation of the Properties of Hot Rolled Products, Elsevier Oxford, 1999.
[49] Y. Lee, Rod and Bar Rolling: Theory and Applications, Marcel Dekker, 2004.
[50] 謝宗憲, 楊曉強, 曾中慶 and 黃志煒, “顯現 40SiCrVT 與 SAE9254 回火麻田散鐵鋼-前沃斯田鐵晶界之研究”, 中華民國28屆中國機械工程學會, 2011.
[51] W. Weibull, “A Statistical Distribution Function of Wide Applicability”, Journal of Applied Mechanics, Vol. 18, No. 3, pp. 293-297, 1951.
[52] P. O’Connor and A. Kleyner, Practical Reliability Engineering, 5th ed., John Wiley & Sons, 2012.
[53] SAE Spring Committee, SAE Manual on Design and Application of Helical and Spiral Springs, 2nd ed., Society of Automotive Engineers, 1997.
[54] B. Faucher and W. R. Tyson, “On the Determination of Weibull Parameters”, Journal of Materials Science Letters, Vol. 7, No. 11, pp. 1199-1203, 1988.
[55] http://www.r-project.org
校內:2019-01-24公開