簡易檢索 / 詳目顯示

研究生: 吳慧紋
Wu, Huei-wen
論文名稱: 微流體晶片製作乳化液滴及其在基因轉殖之應用
Emulsion Droplets for Gene Delivery Utilizing a Microfluidic Chip
指導教授: 李國賓
Lee, Gwo-bin
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 90
中文關鍵詞: 微流體微機電系統基因轉殖載體可調式氣閥乳化
外文關鍵詞: emulsion, vector, Active tunable moving wall, gene transfection, microfluidics, MEMS
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用微機電系統製程技術開發微流體乳化晶片,並成功地將其應用於基因轉殖技術上。此乳化晶片的優點是製作出比傳統方法更具高均一性的乳化液滴顆粒以增加DNA轉殖的效率,此外,此系統可取代傳統大型儀器的繁複操作過程。此論文包含兩種微流體系統晶片設計:一種為傳統式T行交叉式(T-junction)系統晶片,另一種則為可調式氣閥晶片(Active tunable moving wall)。有別於傳統式T行交叉式晶片,新型晶片主要是在T行交叉式晶片微流體管道上加了一組氣閥,此氣閥可以藉由氣壓大小來調控流體管道的寬度,進而控制乳化液滴的尺寸。
    此微流體晶片製程是以SU-8光阻製程先建構出各層平台之母模結構,再以聚二甲基矽氧烷(Polydimethylsiloxane: PDMS)材料翻模,及後續的晶片組裝而成。此外,本研究比較利用鯊烯及大豆油當做油相,並利用上述兩種微流體晶片設計置備高均一性的乳化液滴,並測試其用於基因轉殖之效果。
    在現有的條件之下所得的實驗結果可得知,鯊烯本質接近生物體,轉殖效果比大豆油的來得好。此外,本研究中,兩種微流體晶片在產生乳化液滴之評估上,T型交叉式晶片系統中,流速比越大,乳化液滴尺寸越小,轉殖效率越高。另外,在可調式氣閥晶片中,氣閥壓力越大,產生的液滴尺寸也越小,在此系統中,因只需改變氣閥壓力,便可控制顆粒的大小,如此提供良好的操控性。相對於傳統型T型交叉式晶片,新型晶片不僅可以產生大小均一的基因轉殖載體(乳化液滴),並可減少連續相的浪費而減少操作成本。本研究希望能藉由此系統的發展,應用在更多的生醫技術上。

    This study reports a new microfluidic system to generate micro-scale droplets for high efficient gene delivery. Compared with the conventional way for micro-droplet formation, the proposed system not only can uniformly create micro-droplets and hence enhancing the efficiency of the subsequent gene delivery but also can largely minimize the lengthy processes operated in the traditional devices of similar function. In this study, two types of microfluidic systems were designed including traditional design of microchannel with T-junction layout and a new design with a membrane-based pneumatic microvalve integrated in the tradition one. In this improved design, the size of the micro-droplets can be fine-tuned by the width of the microchannel, controlled by the applied air pressure to the incorporated microvalve. In this work, the fabrication of the microfluidic systems is based on SU-8 lithography and PDMS (poly-dimethylsiloxane) replication processes.
    In this study, two kinds of oil phase (squalene and soybean oil) were used to generate micro-droplets and were tested in terms of the efficiency of the subsequent gene delivery. Also, the two types of microfluidic systems proposed were evaluated experimentally with respect to their performance on micro-droplet formation. Experimental data showed that the oil-in-water droplets were better than water-in-oil droplets on in vitro gene delivery. In addition, compared with the soybean oil counterpart, squalene-based micro-droplets have higher efficiency on gene delivery. Regarding to the size of micro-droplets, in the traditional design of microchannel with T-junction layout, it was observed that the higher the flow rate the smaller the droplet size is, which contributes to higher efficiency of gene delivery. Very similarly, in the new design with a membrane-based pneumatic microvalve integrated, it was found that the higher the applied air pressure in the pneumatic microvalve, the smaller the droplet size is. In contrast to the traditional T-junction design, the proposed new design not only offers a new way to control the size of the generated micro-droplets, reduces the waste of the continuous phase but more importantly, generates micro-droplets with higher size uniformity. This is found particularly useful for a high efficient gene delivery.

    摘 要………Ⅰ Abstract………Ⅲ 誌 謝………Ⅴ 目 錄………Ⅶ 表 目 錄………Ⅹ 圖 目 錄………XI 縮 寫 及 符 號 說 明………XIII 第一章 緒論 1-1 微機電系統與生醫微機電系統………1 1-2 基因轉殖………2 1-3 載體………3 1-3-1 病毒型載體………3 1-3-2 非病毒型載體………6 1-3-3 傳統載體的比較………10 1-4 乳化………11 1-4-1 乳化之基本介紹………11 1-4-1.1 乳化種類介紹………11 1-4-1.2 界面活性劑………11 1-4-1.3 微乳化………14 1-4-2 微流體晶片製作乳化液滴………14 1-5 研究動機與目的………16 1-6 論文架構………17 第二章 理論與流程設計 2-1 理論………19 2-1-1 基因轉殖機制………19 2-1-2 微流體管道晶片機制………19 2-1-2.1 剪應力原理………19 2-1-2.2可調式氣閥晶片作動原理………20 2-2實驗設計流程………21 2-3晶片設計………22 第三章 材料與方法 3-1 基因轉殖實驗………24 3-2 大型系統製作乳化液滴………27 3-2-1 脂質選擇 ………27 3-2-2 界面活性劑選擇………28 3-2-3 油相選擇 ………29 3-3 微流體晶片製程 ………30 3-3-1微流道製作………30 3-3-2可調式氣閥晶片製作 ………34 3-3-3晶片封裝………34 3-4 實驗架設與流程 ………35 3-4-1 實驗架設………35 3-4-2 實驗流程………36 第四章 結果與討論 4-1 大型系統製作乳化液滴之轉殖測試………37 4-2 微流體晶片製作乳化液滴之轉殖測試………39 4-2.1 T型交叉式晶片………39 4-2.2可調式氣閥晶片………40 4-3 比較………41 4-4 綜合討論………41 第五章 結論與未來展望 5-1 結論………43 5-2 未來展望………44 參 考 文 獻………84 自 述………90 著 作………90

    1.R. Feynman, “There’s Plenty of Room at the Bottom”, Journal of Micro Electro Systems, Vol. 1, pp. 60-66, 1992.
    2.R. Feynman, “Infinitesimal Machinery”, Journal of Micro Electro Mechanical Systems, Vol. 2, pp. 4-14, 1993.
    3.黃昱諺, “微型立體線圈及其在DNA操縱之應用,” 國立成功大學工程科學所, 2005.
    4.D. B. Hen, “Gene therapy principle & practice.” 九州圖書文物有限公司
    5.W. T. Godbye and A.G. Mikos, ”Recent progress in gene delievery using non-viral transfer complex,” Journal of Controlled Release, Vol. 72, pp.115-125, 2001.
    6.陳哲雄, “非病毒式體外基因轉殖技術於骨骼損傷治療之開發,” 國立成功大學醫學工程研究所碩士論文, 2002.
    7.P. Horellou, A. B.Bleuel,and J Mallet, ”In vivo adenovirus-mediated gene transfer for Parkinson’s disease,” Neurobiology of Disease, Vol. 4, pp.280-287, 1997.
    8.P. D. Robbins and S.C. Ghivizzani,”Viral vector for gene therapy,” Pharmacology Therapy, Vol.80, pp.35-47, 1998.
    9.N. Frenkel, O. Singer, and A. D. Kwong, “Minireview: the herpes simplex virus amplicon--a versatile defective virus vector,” Gene Ther. Vol.1, pp.40-46,1994.
    10.P. L. Felgner, ”Nonviral strategies for gene therapy.” Sci. Am., Vol.276, pp.102-106, 1997.
    11.N. S. Yang, J. Burkholder, B. Roberts, B.Martinell, and D.McCabe, “In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment,” Proc. Natl. Acad. Sci., Vol. 87, pp.9568-9572, 1990.
    12.D. C. Chang, B. M. Chassy, and J. A Saunders, ”Guide to electroporation and electrofusion, ” Academic Press, 1992.
    13.Y. Ho and G.S.Mittal, ”Electroporation of cell membranes: a review.” Crit. Rev. Biotechnol., Vol.16, pp.349-62,1996.
    14.J. C. Weaver and Y.A. Chizmadzhev , ”Theory of electroporation: A review”, Bioelectrochemistry and Bioenergetics, Vol. 41, pp.135-160 , 1996.
    15.W. T. Godbey and K. K. Wu, ”Poly(ethylenimine) and its role in gene delivery,” Journal of Controlled Release, Vol.60, pp.140-160, 1999.
    16.H. Chung, T. W. Kim, M. Kwin, I. C. Kwon, and S. Y. Jeong, “Oil components modulate physical characteristics and function of the natural oil emulsions as drug or gene delivery system,” Journal of Controlled Release, Vol.71, pp.339-350, 2001.
    17.陳承佐, “新型乳化液滴平台研發,” 國立成功大學醫學工程研究所碩士論文, 2006.
    18.王君庭, “金奈米及粒子金屬/高分子微球核殼型複合奈米粒子之製備,” 國立成功大學化學工程研究所碩士論文, 2003.
    19.王鳳英編繹,刈米孝夫原著,“界面活性劑的原理與應用”,高立圖書有限公司,民國八十二年六月二十五版.
    20.趙承琛博士編著,“界面科學基礎”, 復文書局
    21.L. M. Prince, “Microemulsions:Theory and Practice”, Academic Press, Vol.45 1977.
    22.曹恒光,連大成,”漫談微乳液,” 物理雙月刊, 二十三卷四期, 2001.
    23.S. E. Friberg and K. Larsson, “Food emulsions”, Marcel Dekker Inc. , pp.189-233, 1997.
    24.C. Wibowo and K. M. Ng, “Product-oriented process synthesis and development: creams and pastes”, American Institute of Chemical Engineers Journal, Vol.47, pp.2746-2767, 2001.
    25.T. Hamouda, M. M. Hayes, Z. Cao, R. Tonda, K. Johnson, D. C. Wright, J. Brisker, and J. R. Baker, “A novel surfactant nanoemulsion with broad-spectrum sporicidal activity against Bacillus species”, The Journal of Infectious Diseases, Vol.180, pp.1939-1949,1999.
    26.A. V. Korobko, W. Jesse, and van J. R. C. der Maarel, “Encapsulation of DNA by Cationic Diblock Copolymer Vesicles”, Langmuir, Vol.21, pp.34 -42, 2005.
    27.S. M. Moghimi, A. C. Hunter, and J. C. Murray “Nanomedicine: current status andfuture prospects”, Journal of the Federation of American Societies for Experimental Biology, Vol.19, pp.311-330, 2005.
    28.T. Kojima, Y. Takei, M. Ohtsuka, Y. Kawarasaki, T. Yamane and H. Nakano, “PCR amplification from single DNA molecules on magnetic beads in emulsion: application for high-throughput screening of transcription factor targets”, Nucleic Acids Research, Vol.33, 2005.
    29.G. T. Vladisavljevic and H. Schubert, “Preparation and analysis of oil-in-water emulsions with a narrow droplet size distribution using Shirasu-porous-glass (SPG) membranes”, Desalination, 144, 167-172, 2002.
    30.D. J. McClements, “Food Emulsions: Principles, Practice, and Techniques”, CRC Press, 1999.
    31.J. Tong, M. Nakajima, H. Nabetani, Y. Kikuchi and Y. Maruta, “Production of oil-in-water microspheres using a stainless steel microchannel”, Journal of Colloid and Interface Science, Vol.237, pp.239-248, 2001.
    32.T. Kawakatsu, G. Tragardh, Ch. Tragardh, M. Nakajima, N. Oda and T. Yonemoto, “The effect of the hydrophobicity of microchannels and components in water and oil phase on droplet formation in microchannel water-in-oil emulsification”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.179, pp.29-37, 2001.
    33.S. Sugiura, M. Nakajima, H. Ushijima, K. Yamamoto and M .Seki, “Preparation characteristics of monodispersed water-in-oil emulsions using microchannel emulsification”, Journal of Chemical Engineering of Japan, Vol.34, pp.757-765, 2001.
    34.S. Suriura, M. Nakajima, and M. Seki, “Effect of channel structure on microchannel emulsification”, Langmuir, Vol.18, pp.5708-5712, 2002.
    35.S. Sugiura, M. Nakajima, S. Iwamoto and M. Seki, “Interfacial tension driven monodispersed droplet formation from microfabricated channel array”, Langmuir, Vol.17, pp.5562-5566, 2001.
    36.I. Kobayashi and M. Nakajima, “Silicon array of elongated through-holes for monodisperse emulsion droplets”, American Institute of Chemical Engineers Journal, Vol.48, pp.1639-1644, 2002.
    37.S. L. Anna, N. Bontoux and H. A. Stone, “Formation of dispersions using ‘flow-focusing’ in microchannels”, Applied Physics Letter, Vol.82, pp.364-366, 2003.
    38.P. Garstecki, I. Gitlin, W. DiLuzio and G. M. Whitesides, “Formation of monodisperse bubbles in a microfluidic flow-focusing device”, Applied Physics Letter, Vol.85, pp.2649-2651, 2004.
    39.T. Nisisako, T. Torii and T. Higuchi, “Droplet formation in a microchannel network”, Lab on Chip, Vol.2, pp.24-26, 2002.
    40.T. Nisisako, T. Torii and T. Higuchi, “Droplet formation in a microchannel network”, Lab on Chip, Vol.2, pp.24-26, 2002.
    41.T. W. Kim, Y. J. Kim, H. Chung , I. C. Kwon, H C. Sung, and S. Y. Jeong, ”The role of non-ionic surfactants on cationic lipid mediated gene transfer,” Journal of Controlled Release, Vol.82, pp.455–465, 2002.
    42.Kovacs, ”Micromachined Transducers Sourcebook,” McGraw-Hill, p.785, 2001.
    43.L.H. He, C. W. Lim, and B. S. Wu, “A Continum Modle for Size-dependent Deformation of Elastic Films of Nano-scale Thickness,” International Journal of Solids and Structures, Vol.41, pp.847-857,2004
    44.B. E. Slentz, N. A. Penner and F. E. Regnier, “Capillary Electrochromatography of Peptides on Microfabricated Poly(dimethylsiloxane) Chips Modified by Cerium(IV)-catalyzed Polymerization,” Journal of Chromatography A, Vol. 948, pp.225–233, 2002.
    45.黃朝均, “整合型流體之葡萄檢測及自動化胰島素注射系統,” 國立成功大學醫學工程研究所碩士論文, 2006.
    46.Data Sheet for NANOTM SU-8 Negative Tone Photoresists, Formulations 50 & 100, released by MICRO-CHEM. Corp.

    下載圖示 校內:2008-08-16公開
    校外:2008-08-16公開
    QR CODE