簡易檢索 / 詳目顯示

研究生: 陳韶康
Chen, Shao-Kang
論文名稱: 綠膿桿菌訊息傳遞系統中磷酸轉移酶與訊息感知酶磷酸接收區之晶體結構及結合作用分析
Structures and interactions of histidine-containing phosphotransfer protein and receiver domain of sensor histidine kinase in two-component system of P. aeruginosa PAO1
指導教授: 陳俊榮
Chen, Chun-Jung
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 83
中文關鍵詞: 綠膿桿菌雙元件系統訊息感知酶磷酸轉移酶
外文關鍵詞: P. aeruginosa, two-component regulatory system, sensor histidine kinase, histidine-containing phosphotransfer protein.
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙元件系統是廣泛出現於原核生物中的訊息傳遞機制,可幫助細胞感受周遭環境改變的刺激並對此進行調控反應。在綠膿桿菌此一重要的機會致病菌中,由磷酸轉移酶HptB所參與的雜合型雙元件系統被發現與調控菌體的泳動能力和生物膜形成有關有關。為了瞭解磷酸接收區與磷酸轉移酶之間訊息傳遞的機制,我們把同步輻射X光繞射分別得到兩蛋白晶體的高解析度繞射數據,並藉此解構出磷酸轉移酶HptB與訊息感知酶PA1611之磷酸接受區的晶體結構。分析後發現這兩種蛋白質的晶體結構均呈現典型的摺疊構型。HptB由α螺旋2到α螺旋5摺疊成細長的四螺旋束,其N端由α螺旋1覆蓋。高度保留性的活性氨基酸His57位於α3接近中間的位置,其側鍊曝露於溶液環境中。PA1611REC呈現(β/α)5構型,中心部份的五個β摺板被周圍的五個α螺旋環繞,帶負電的活性區中有一鎂離子,其與三個氨基酸(Asp522、Asp565、Arg567)間有交互作用力。藉由電腦模擬的方式,建構了此磷酸接收區與磷酸轉移酶在進行訊息傳遞時可能形成的複合體結構並了解其間之交互作用,並發現與其他複合體相比,參與交互作用的氨基酸數量較少,作用力也有所不同。這有助於進一步瞭解綠膿桿菌中的雜合型雙元件系統,並有潛力引領針對綠膿桿菌感染的新療法之開發。

    In Pseudomonas aeruginosa, an important opportunistic pathogen causing numerous acute and chronic infections, the hybrid two-component system (TCS) regulates the swarming ability and biofilm formation with a multistep phosphorelay and consists of hybrid sensor histidine kinase (HK), histidine-containing phosphotransfer protein (Hpt) and response regulator (RR). In this study, the crystal structures of HptB (PA3345) and the receiver domain of HK PA1611 (PA1611REC) were determined, respectively, of P. aeruginosa to elucidate their interactions for the transfer of the phosphoryl group. The structure of HptB folds into an elongated four-helix bundle composed of helices α2 to α5 and covered by a short N-terminal helix α1. The imidazole side chain of the conserved active-site histidine residue, His57, is located near the middle of helix α3 and protrudes to a solvent. The structure of PA1611REC possesses a conventional (β/α)5 topology with 5 α-helices surrounding 5 parallel β-sheets. The divalent Mg2+ ion is located in the negatively charged active-site cleft and interacts with Asp522, Asp565 and Arg567.The HptB-PA1611REC complex is further modeled to analyze the binding surface and interactions between the two proteins. The model shows a shape complementarity between the convex surface of PA1611REC and the kidney-shaped HptB with fewer residues and a different network involved in interactions compared to other TCS complexes, such as SLN1-R1/YPD1 from Saccharomyces cerevisiae and AHK5RD/AHP1 from Arabidopsis thaliana. These structural results provide a better understanding of TCS in P. aeruginosa and potentially leads to a discovery of the new treatment for infection.

    Chinese Abstract(中文摘要) …..…………………………………………………….. I Abstract ...………………………………………………………………………………... II Acknowledgements ...…………………………………………………………………… VI Table of Contents ...……………………………………………………………………. VII Contents of Tables ...…………………………………………………………………..… X Contents of Figures ...………………………………………………………………....... XI Contents of Appendices ...…… ………………………………………………………. XIII Abbreviation List ...………………………………………………………………….... XIV Chapter 1 Research Background ...………………………………………………….….. 1 1-1 Pseudomonas aeruginosa PAO1 ...……………....………………........…………. 1 1-2 Two-component regulatory system (TCS) ............................................................. 2 1-3 HptB-mediated hybrid TCS in Pseudomonas aeruginosa PAO1 .......................... 3 1-4 Histidine-containing phosphotransfer protein B (HptB) ...………………....…… 5 1-5 Thesis purpose ....................................................................................................... 6 Chapter 2 Materials and Methods ................................................................................... 7 2-1 Construction of expression vector ......................................................................... 7 2-2 Expression of recombinant protein ........................................................................ 7 2-3 Purification of recombinant protein ....................................................................... 9 2-4 Protein crystallization .......................................................................................... 10 2-5 Data collection and processing ............................................................................ 11 2-6 Structure determination and refinement .............................................................. 11 2-7 Modelling of HptB-PA1611REC complex .......................................................... 12 Chapter 3 Results ............................................................................................................. 14 3-1 Purification and crystallization of native HptB ................................................... 14 3-2 Purification and crystallization of PA1611REC .................................................. 14 3-3 Overall structure of native HptB ......................................................................... 15 3-4 The conserved structural features of HptB .......................................................... 17 3-5 Metal binding in the active-site cleft of PA1611REC ......................................... 19 3-6 Analysis of the interface in HptB-PA1611REC complex model ......................... 21 Chapter 4 Discussion ........................................................................................................ 25 4-1 Comparison of HptB with other Hpt proteins/domains ....................................... 25 4-2 Structural features of HptB related to interaction with REC ............................... 26 4-3 Comparison of PA1611REC with other receiver domains ................................... 29 4-4 Structural alterations in activated REC ................................................................ 30 4-5 Interactions among REC, metal ion and Hpt ....................................................... 32 References ......................................................................................................................... 38 Tables ................................................................................................................................. 45 Figures ............................................................................................................................... 51 Appendices ........................................................................................................................ 80 Related Paper Publications .............................................................................................. 83

    Appleby, J. L., Parkinson, J. S. and Bourret, R. B. Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell 86, 845-848, 1996.
    Balasubramanian, D., Schneper, L., Kumari, H. and Mathee, K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Research 41, 1-20, 2013.
    Bauer, J., Reiss, K., Veerabagu, M., Heunemann, M., Harter, K. and Stehle, T. Structure-function analysis of Arabidopsis thaliana histidine kinase AHK5 bound to its cognate phosphotransfer protein AHP1. Molecular Plant 6, 959-970, 2013.
    Bordi, C., Lamy, M., Ventre, I., Termine, E., Hachani, A., Fillet, S., Roche, B., Bleves, S., Méjean, V., Lazdunski, A. and Filloux, A. Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis. Molecular Microbiology 76, 1427-1443, 2010.
    Bourret, R. B. Receiver domain structure and function in response regulator proteins. Current Opinion in Microbiology 13, 142-149, 2010.
    Bhuwan, M., Lee, H. J., Peng, H. L. and Chang, H. Y. Histidine-containing phosphotransfer protein-B (HptB) regulates swarming motility through partner-switching system in Pseudomonas aeruginosa PAO1 Strain. Journal of Biological Chemistry 287, 1903-1914, 2012.
    Capra, E. J., Perchuk, B. S., Lubin, E. A., Ashenberg, O., Skerker, J. M. and Laub, M. T. Systematic dissection and trajectory-scanning mutagenesis of the molecular interface that ensures specificity of two-component signaling pathways. PLoS Genetics 6, e1001220, 2010.
    Chen, Y. T., Chang, H. Y., Lu, C. L. and Peng, H. L. Evolutionary analysis of the two-component systems in Pseudomonas aeruginosa PAO1. Journal of Molecular Evolution 59, 725-737, 2004.
    Cho, H. S., Lee, S. Y., Yan, D., Pan, X., Parkinson, J. S., Kustu, S., Wemmer, D. E. and Pelton, J. G. NMR structure of activated CheY. Journal of Molecular Biology 297, 543-551, 2000.
    Draughn, G. L., Milton, M. E., Feldmann, E. A., Bobay, B. G., Roth, B. M., Olson, A. L., Thompson, R. J., Actis, L. A., Davies, C. and Cavanagh, J. The structure of the biofilm-controlling response regulator BfmR from Acinetobacter baumannii reveals details of its DNA-binding mechanism. Journal of Molecular Biology 430, 806-821, 2018.
    Drenkard, E. and Ausubel, F. M. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416, 740-743, 2002.
    Emsley, P., Lohkamp, B., Scott, W. G. and Cowtan, K. Features and development of Coot. Acta Crystallographica Section D 66, 486-501, 2010.
    Freeman, J. A. and Bassler, B. L. Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. Journal of Bacteriology 181, 899-906, 1999.
    Holm, L. and Rosenström, P. Dali server: conservation mapping in 3D. Nucleic Acids Research 38, W545-W549, 2010.
    Hsu, J. L., Chen, H. C., Peng, H. L. and Chang, H. Y. Characterization of the histidine-containing phosphotransfer protein B-mediated multistep phosphorelay system in Pseudomonas aeruginosa PAO1. Journal of Biological Chemistry 283, 9933-9944, 2008.
    Hubbard, S. J. and Thornton, J. M. ‘NACCESS’, computer program, 1993.
    Janiak-Spens, F., Sparling, D. P. and West, A. H. Novel role for an HPt domain in stabilizing the phosphorylated state of a response regulator domain. Journal of Bacteriology 182, 6673-6678, 2000.
    Janiak-Spens, F. and West, A. H. Functional roles of conserved amino acid residues surrounding the phosphorylatable histidine of the yeast phosphorelay protein YPD1. Molecular Microbiology 37, 136-144, 2000.
    Kabsch, W. and Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577-2637, 1983.
    Kaserer, A. O., Andi, B., Cook, P. F. and West, A. H. Kinetic studies of the yeast His-Asp phosphorelay signaling pathway. Methods in Enzymology 471, 59-75, 2010.
    Kato, M., Mizuno, T., Shimizu, T. and Hakoshima, T. Insights into multistep phosphorelay from the crystal structure of the C-terminal Hpt domain of ArcB. Cell 88, 717-723, 1997.
    Kato, M., Shimizu, T., Mizuno, T. and Hakoshima, T. Structure of the histidine-containing phosphotransfer (HPt) domain of the anaerobic sensor protein ArcB complexed with the chemotaxis response regulator CheY. Acta Crystallographica Section D 55, 1257-1263, 1999.
    Kong, W., Chen, L., Zhao, J., Shen, T., Surette, M. G., Shen, L. and Duan, K. Hybrid sensor kinase PA1611 in Pseudomonas aeruginosa regulates transitions between acute and chronic infection through direct interaction with RetS. Molecular Microbiology 88, 784-797, 2013.
    Krissinel, E. and Henrick, K. Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology 372, 774-797, 2007.
    Lee, S. Y., Cho, H. S., Pelton, J. G., Yan, D., Berry, E. A. and Wemmer, D. E. Crystal structure of activated CheY. Comparison with other activated receiver domains. Journal of Biological Chemistry 276, 16425-16431, 2001.
    Lin, C. T., Huang, Y. J., Chu, P. H., Hsu, J. L., Huang, C. H. and Peng, H. L. Identification of an HptB-mediated multi-step phosphorelay in Pseudomonas aeruginosa PAO1. Research in Microbiology 157, 169-175, 2006.
    Lin, L. T. Structural studies of the C75A HptB mutant in two component system from Pseudomonas aeruginosa. Master thesis. Retrieved from National Tsing Hua University of Institute of Bioinformatics and Structural Biology. 2009.
    Lukat, G. S., Stock, A. M. and Stock, J. B. Divalent metal ion binding to the CheY protein and its significance to phosphotransfer in bacterial chemotaxis. Biochemistry 29, 5436-5442, 1990.
    Lyczak, J. B., Cannon, C. L. and Pier, G.B. Lung infections associated with cystic fibrosis. Clinical Microbiology Reviews 15, 194-222, 2002.
    Murshudov G. N., Skubák P., Lebedev A. A., Pannu N. S., Steiner R. A., Nicholls R. A., Winn M. D., Long, F. and Vagin, A. A. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica Section D 67, 355-367, 2011.
    Ocasio, V. J., Corrêa, F. and Gardner, K. H. Ligand-induced folding of a two-component signaling receiver domain. Biochemistry 54, 1353-1363, 2015.
    Otwinowski, Z. and Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology 276, 307-326, 1997.
    Posas, F., Wurgler-Murphy, S. M., Maeda, T., Witten, E. A., Thai, T. C. and Saito, H. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell 86, 865-875, 1996.
    Rodrigue, A., Quentin, Y., Lazdunski, A., Méjean, V. and Foglino, M. Two-component systems in Pseudomonas aeruginosa: why so many? Trends in Microbiology 8, 498-504, 2000.
    Rogov, V. V., Bernhard, F., Löhr, F. and Dötsch, V. Solution structure of the Escherichia coli YojN histidine-phosphotransferase domain and its interaction with cognate phosphoryl receiver domains. Journal of Molecular Biology 343, 1035-1048, 2004.
    Ruszkowski, M., Brzezinski, K., Jedrzejczak, R., Dauter, M., Dauter, Z., Sikorski, M. and Jaskolski, M. Medicago truncatula histidine-containing phosphotransfer protein: structural and biochemical insights into the cytokinin transduction pathway in plants. Federation of European Biochemical Societies Journal 280, 3709-3720, 2013.
    Skerker, J. M., Perchuk, B. S., Siryaporn, A., Lubin, E. A., Ashenberg, O., Goulian, M. and Laub, M. T. Rewiring the specificity of two-component signal transduction systems. Cell 133, 1043-1054, 2008.
    Stock, A. M., Martinez-Hackert, E., Rasmussen, B. F., West, A. H., Stock, J. B., Ringe, D. and Petsko, G. A. Structure of the Mg2+-bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis. Biochemistry 32, 13375-13380, 1993.
    Stock, A. M., Robinson, V. L. and Goudreau, P. N. Two-component signal transduction. Annual Review of Biochemistry 69, 183-215, 2000.
    Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S., Hufnagle, W. O., Kowalik, D. J., Lagrou, M., Garber, R. L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L. L., Coulter, S. N., Folger, K. R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G. K., Wu, Z., Paulsen, I. T., Reizer, J., Saier, M. H., Hancock, R. E., Lory, S. and Olson, M. V. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959-964, 2000.
    Sugawara, H., Kawano, Y., Hatakeyama, T., Yamaya, T., Kamiya, N. and Sakakibara, H. Crystal structure of the histidine-containing phosphotransfer protein ZmHP2 from maize. Protein Science 14, 202-208, 2005.
    Suman, E., Singh, S. and Kotian, S. Pseudomonas aeruginosa biofilms in hospital water systems and the effect of sub-inhibitory concentration of chlorine. Journal of Hospital Infection 70, 199-201, 2008.
    Takeda, S., Fujisawa, Y., Matsubara, M., Aiba, H. and Mizuno, T. A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC  YojN  RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Molecular Microbiology 40, 440-450, 2001.
    Thomason, P. and Kay, R. Eukaryotic signal transduction via histidine-aspartate phosphorelay. Journal of Cell Science 113, 3141-3150, 2000.
    Touw, W. G., Baakman, C., Black, J., te Beek, T. A. H., Krieger, E., Joosten, R. P. and Vriend, G. A series of PDB-related databanks for everyday needs. Nucleic Acids Research 43, D364-D368, 2015.
    Tsai, C. N., MacNair, C. R., Cao, M. P. T., Perry, J. N., Magolan, J., Brown, E. D. and Coombes, B. K. Targeting two-component systems uncovers a small-molecule inhibitor of Salmonella virulence. Cell Chemical Biology 27, 793-805, 2020.
    Usher, K. C., de la Cruz, A. F., Dahlquist, F. W., Swanson, R. V., Simon, M. I. and Remington, S. J. Crystal structures of CheY from Thermotoga maritima do not support conventional explanations for the structural basis of enhanced thermostability. Protein Science 7, 403-412, 1998.
    van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond. A. S. J., van Dijk, M., de Vries, S. J. and Bonvin A. M. J. J. J. The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology 428, 720-725, 2016.
    Varughese, K. I., Tsigelny, I. and Zhao, H. The crystal structure of beryllofluoride Spo0F in complex with the phosphotransferase Spo0B represents a phosphotransfer pretransition state. Journal of Bacteriology 188, 4970-4977, 2006.
    Velikova, N., Fulle, S., Manso, A. S., Mechkarska, M., Finn, P., Conlon, J. M., Oggioni, M. R., Wells, J. M. and Marina, A. Putative histidine kinase inhibitors with antibacterial effect against multi-drug resistant clinical isolates identified by in vitro and in silico screens. Scientific Reports 13, 26085, 2016.
    Wilke, K. E., Fihn, C. A. and Carlson, E. E. Screening serine/threonine and tyrosine kinase inhibitors for histidine kinase inhibition. Bioorganic and Medicinal Chemistry 26, 5322-5326, 2018.
    Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A. and Wilson, K. S. Overview of the CCP4 suite and current developments. Acta Crystallographica Section D 67, 235-242, 2011.
    Wolanin, P. M., Thomason, P. A. and Stock, J. B. Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biology 3, 3013.1-3013.8, 2002.
    Wu, M. C. Crystal structure of the receiver domain of sensor histidine kinase from Pseudomonas aeruginosa suggest a binding model with phosphotransfer HptB for signal transduction. Master thesis. Retrieved from National Cheng Kung University of Institute of Biotechnology. 2014.
    Xu, Q. and West, A. H. Conservation of structure and function among histidine-containing phosphotransfer (HPt) domains as revealed by the crystal structure of YPD1. Journal of Molecular Biology 292, 1039-1050, 1999.
    Xu, Q., Porter, S. W. and West, A. H. The yeast YPD1/SLN1 complex: insights into molecular recognition in two-component signaling systems. Structure 11, 1569-1581, 2003.
    Xu, Q., Carlton, D., Miller, M. D., Elsliger, M., Krishna, S. S., Abdubek, P., Astakhova, T., Burra, P., Chiu, H. J., Clayton, T., Deller, M. C., Duan, L., Elias, Y., Feuerhelm, J., Grant, J. C., Grzechnik, A., Grzechnik, S. K., Han, G. W., Jaroszewski, L., Jin, K. K., Klock, H. E., Knuth, M. W., Kozbial, P., Kumar, A., Marciano, D., McMullan, D., Morse, A. T., Nigoghossian, E., Okach, L., Oommachen, S., Paulsen, J., Reyes, R., Rife, C. L., Sefcovic, N., Trame, C., Trout, C. V., van den Bedem, H., Weekes, D., Hodgson, K. O., Wooley, J., Deacon, A. M., Godzik, A., Lesley, S. A. and Wilson, I. A. Crystal structure of histidine phosphotransfer protein ShpA, an essential regulator of stalk biogenesis in Caulobacter crescentus. Journal of Molecular Biology 390, 686-698, 2009.
    Zhao, X., Copeland, D. M., Soares, A. S. and West, A. H. Crystal structure of a complex between the phosphorelay protein YPD1 and the response regulator domain of SLN1 bound to a phosphoryl analog. Journal of Molecular Biology 375, 1141-1151, 2008.

    無法下載圖示 校內:2025-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE