簡易檢索 / 詳目顯示

研究生: 柯翰
Ko, Han
論文名稱: 藉由配位子-金屬電荷轉移躍遷提升氧化鐵奈米材料光子能量轉換用於光熱抗菌以及複合性癌症光療法
Enhanced photon energy conversion of iron oxide nanomaterials via ligand-to-metal charge transfer process for photothermal antibacterial activity and combined phototherapy
指導教授: 黃志嘉
Huang, Chih-Chia
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 112
中文關鍵詞: 氧化鐵奈米材料配位子-金屬電荷轉移光熱治療光熱抗菌癌症光療法
外文關鍵詞: IONP, LMCT, photothermal therapy, antibacterial activity, cancer therapy
相關次數: 點閱:130下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇研究中,我們研究藉由單寧酸與鐵離子的電荷轉移特性以提升商業化的氧化鐵奈米粒子的光熱轉換效率。這是首篇提出以表面修飾富含電子的配位子以配位子—金屬電荷轉移(LMCT)的效應提升光熱轉換效果的研究。水熱合成過程中,我們也首次觀察到磁赤鐵礦(γ-Fe2O3)和磁鐵礦(Fe3O4)於水相系統中相轉換反應,有別以往於高溫高壓固態環境底下的氧化鐵相轉換反應。在此結果上,我們提出了一種簡單且符合綠色化學的方法合成出包含光學活性以及磁性響應的單寧酸修飾氧化鐵奈米粒子(IONP-TNA)。此研究以穿隧式電子顯微鏡(TEM)觀察奈米粒子形貌並計算其粒徑大小分佈,以X-ray繞射分析儀(XRD)以及顯微搭載拉曼光譜儀研究氧化鐵的晶體結構。並以傅里葉轉換紅外光譜(FTIR)、熱重分析(TGA)以及X光光電子能譜儀(XPS)研究奈米粒子表面化學。在光學性質的探討上,我們研究氧化鐵奈米粒子的紫外-可見光吸收光譜(UV-vis)、光熱轉換效應以及轉換效率計算。同時,此研究也將探討不同反應條件如溫度、劑量以及不同種類的氧化鐵或茶多酚進行合成修飾,以說明此研究之通用性。
    在應用端,我們應用IONP-TNA於近紅外雷射照激發光熱抗菌以及結合亞甲基藍分子(MB)作為光敏劑對於膀胱癌細胞進行複合型光治療。在光熱抗菌方面,此研究以甘露糖分子(d-mannose)修飾於IONP-TNA上(IONP-TNA@Man)作為大腸桿菌(E. coli)標靶分子,並以808 奈米近紅外光激發IONP-TNA@Man產生侷限域的高熱殺死鄰近細菌,對於不同種類的大腸桿菌如出血性的O157:H7及抗藥性的ESBL皆有良好的光熱抗菌效果。在癌症複合光療法方面,IONP-TNA展現良好的光敏藥物攜載率並提升光敏藥物於不同環境中的穩定性。此外,其具有降低細胞中穀胱甘肽的效果,作為抵抗細胞內的抗氧化劑藉以提升光動力治療效果。在癌症光熱/光動力複合治療下達到良好的療效。其高度的r2弛緩率也展現了作為核磁共振成像(MRI)顯影劑的潛能,達到結合治療與診斷的功效。

    The photon absorption enhancement inducing photothermal conversion via interfacial ligand-to-metal charge transfer (LMCT) was first proposed in this study. Through a wet-chemistry hydrothermal process of tannic acid (TNA) and commercial iron oxide (γ-Fe2O3) nanoparticles (γ-IONP(c)), the phase transformation from γ-Fe2O3 to form Fe3O4 material. UV-visible, FT-IR, and TGA measurements determined 6.1 % TNA molecules immobilized onto the surface of IONPs (IONP-TNA). Such ligand-assisted complex effect showed an absorption enhancement in the wide visible-NIR wavelengths via interfacial LMCT effect between TNA and IONPs. The different TNA concentrations and reaction temperatures were further studied for demonstrating the preferred co-precipitation and self-assembly of TNA with Fe3+ ions on the NPs surface.
    IONP-TNA was further modified with d-mannose (IONP-TNA@Man) to increase binding affinity toward the membrane molecules of Escherichia coli (E. coli). IONP-TNA@Man could efficiently accumulate on the different strains of E. coli and produce the localized hyperthermia to destroy the bacteria surface directly upon an excitation with a NIR laser. It also sterilized well against Gram-positive bacteria, as the model of Staphylococcus aureus (S. aureus). Considering of eco-friendly concept, IONP-TNA@Man could recycle via external magnetic field-integrated PTA treatment. We prepared methylene blue (MB)-immobilized IONP-TNA (IONP-TNA@MB) for executing combined photothermal-photodynamic therapy (PDT). IONP-TNA@MB was stable in different environment and could deplete the glutathione (GSH), a natural PDT physiological barrier. As an employment of 660 nm light, IONP-TNA@MB acted as a therapeutic nano-mediator for inducing cancer cell death via the iron oxide-mediated phototherapy.

    1. Introduction 1 1.1 Iron oxide nanoparticles 1 1.1.1 Type of iron oxide nanoparticles 1 1.1.2 Phase transformation of iron oxide 2 1.1.3 Optical and band structure of iron oxide nanoparticles 2 1.2 Ligand-to-metal charge transfer systems 4 1.2.1 Interfacial charge transfer in semiconductor applications 4 1.2.2 Metal-phenolic materials 5 1.2.3 Tannic acid 6 1.3 Phototherapy 7 1.3.1 Photothermal therapy in nanotechnology 7 1.3.2 Photothermal therapy with iron oxide nanoparticles 8 1.3.3 Photodynamic therapy 11 1.3.4 Phototherapy with iron oxide in cancer treatment 13 1.4 Antibacterial Activity 14 1.4.1 The antibiotic abuse--problem and solution 14 1.4.2 The adhesion and infection of bacteria 14 1.4.3 The mechanism of antibacterial nanotechnology 15 1.4.4 Antibacterial activity with iron oxide nanoparticles 16 2. Motivation 28 3. Method and Materials 30 3.1 Materials 30 3.2 Equipment 32 3.3 Synthesis and preparations Methods 33 3.3.1 Synthesis of IONP-TNA 33 3.3.2 Synthesis of IONP-TNA@Man 33 3.3.3 Photothermal conversion effect measurement 33 3.3.4 Bacteria incubation method 34 3.3.5 Photothermal antibacterial activity 34 3.3.6 Methylene blue conjugating on IONP-TNA 35 3.3.7 Cell viability of PTT combined PDT against T24 cell 35 3.3.8 Glutathione depletion ability of IONP-TNA@MB 35 3.3.9 Lipid peroxidation of T24 cell after PDT treatment 36 3.3.10 Photothermal conversion efficiency calculation 36 4. Results and discussion 39 4.1 Characteristics 39 4.1.1 Structure of tannic acid immobilized Fe3O4 NPs 39 4.1.2 Optical performance of IONP-TNA 43 4.1.3 TNA immobilization on different type of IONP 45 4.1.4 Synthesis of different polyphenol immobilization 46 4.1.5 Magnetism of iron oxide nanoparticles 46 4.1.6 D-mannose modified iron oxide nanoparticles 46 4.1.7 Ascorbic acid reducing iron oxide nanoparticles 47 4.1.8 Gram-scale synthesis of IONP-TNA 48 4.2 Antibacterial activity 49 4.2.1 Antibacterial activity of TNA and nanomaterials 49 4.2.2 Photothermal antibacterial activity against E. coli 49 4.2.3 The bacteria adhesion study 51 4.2.4 Photothermal antibacterial activity of S. aureus 52 4.2.5 The confirmation of localized hyperthermia 53 4.2.6 Recycle photothermal antibacterial activity 54 4.2.7 Biocompatibility of iron oxide nanoparticles 54 4.3 Combined phototherapy for bladder cancer 55 4.3.1 IONP-TNA as photosensitizer carrier (IONP-TNA@MB) 55 4.3.2 Photothermal and singlet oxygen generation ability of IONP-TNA@MB 56 4.3.3 In vitro cell viability study – MTT assay 57 4.3.4 Cell morphology study – in situ bright field image 58 4.3.5 GSH depletion ability of IONP-TNA@MB 59 4.3.6 The mechanism study – membrane peroxidation 59 5. Conclusion 96

    1. Wu, W.; Wu, Z. H.; Yu, T.; Jiang, C. Z.; Kim, W. S., Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Science and Technology of Advanced Materials 2015, 16 (2), 43.
    2. Horák, D.; Babič, M.; Jendelová, P.; Herynek, V.; Trchová, M.; Pientka, Z.; Pollert, E.; Hájek, M.; Syková, E., d-Mannose-Modified Iron Oxide Nanoparticles for Stem Cell Labeling. Bioconjugate Chemistry 2007, 18 (3), 635-644.
    3. Huang, C.-C.; Chang, P.-Y.; Liu, C.-L.; Xu, J.-P.; Wu, S.-P.; Kuo, W.-C., New insight on optical and magnetic Fe3O4 nanoclusters promising for near infrared theranostic applications. Nanoscale 2015, 7 (29), 12689-12697.
    4. Liao, M. Y.; Lai, P. S.; Yu, H. P.; Lin, H. P.; Huang, C. C., Innovative ligand-assisted synthesis of NIR-activated iron oxide for cancer theranostics. Chem Commun (Camb) 2012, 48 (43), 5319-21.
    5. Klemm, P. J.; Floyd, W. C., 3rd; Smiles, D. E.; Frechet, J. M.; Raymond, K. N., Improving T(1) and T(2) magnetic resonance imaging contrast agents through the conjugation of an esteramide dendrimer to high-water-coordination Gd(III) hydroxypyridinone complexes. Contrast Media Mol Imaging 2012, 7 (1), 95-9.
    6. Liao, M. Y.; Wu, C. H.; Lai, P. S.; Yu, J.; Lin, H. P.; Liu, T. M.; Huang, C. C., Surface State Mediated NIR Two‐Photon Fluorescence of Iron Oxides for Nonlinear Optical Microscopy. Advanced Functional Materials 2013, 23 (16), 2044-2051.
    7. Lee, N.; Schuck, P. J.; Nico, P. S.; Gilbert, B., Surface Enhanced Raman Spectroscopy of Organic Molecules on Magnetite (Fe3O4) Nanoparticles. The Journal of Physical Chemistry Letters 2015, 6 (6), 970-974.
    8. Du, N.; Xu, Y.; Zhang, H.; Zhai, C.; Yang, D., Selective Synthesis of Fe(2)O(3) and Fe(3)O(4) Nanowires Via a Single Precursor: A General Method for Metal Oxide Nanowires. Nanoscale Research Letters 2010, 5 (8), 1295-1300.
    9. Zhang, X.; Niu, Y.; Meng, X.; Li, Y.; Zhao, J., Structural evolution and characteristics of the phase transformations between α-Fe2O3, Fe3O4 and γ-Fe2O3 nanoparticles under reducing and oxidizing atmospheres. CrystEngComm 2013, 15 (40), 8166.
    10. He, Y. P.; Miao, Y. M.; Li, C. R.; Wang, S. Q.; Cao, L.; Xie, S. S.; Yang, G. Z.; Zou, B. S.; Burda, C., Size and structure effect on optical transitions of iron oxide nanocrystals. Physical Review B 2005, 71 (12).
    11. Sadat, M. E.; Kaveh Baghbador, M.; Dunn, A. W.; Wagner, H. P.; Ewing, R. C.; Zhang, J.; Xu, H.; Pauletti, G. M.; Mast, D. B.; Shi, D., Photoluminescence and photothermal effect of Fe3O4 nanoparticles for medical imaging and therapy. Applied Physics Letters 2014, 105 (9).
    12. Gao, S.; Fan, R. Q.; Wang, X. M.; Qiang, L. S.; Wei, L. G.; Wang, P.; Zhang, H. J.; Yang, Y. L.; Wang, Y. L., An insight into the controllable synthesis of Cd(ii) complexes with a new multifunctional ligand and its application in dye-sensitized solar cells and luminescence properties. Journal of Materials Chemistry A 2015, 3 (11), 6053-6063.
    13. Templeton, D., Molecular and Cellular Iron Transport. Taylor & Francis: 2002.
    14. Zhang, G.; Choi, W., A low-cost sensitizer based on a phenolic resin for charge-transfer type photocatalysts working under visible light. Chem Commun (Camb) 2012, 48 (86), 10621-3.
    15. Liu, F.; He, X.; Chen, H.; Zhang, J.; Zhang, H.; Wang, Z., Gram-scale synthesis of coordination polymer nanodots with renal clearance properties for cancer theranostic applications. Nat Commun 2015, 6, 8003.
    16. Zhao, G.; Wu, H.; Feng, R.; Wang, D.; Xu, P.; Jiang, P.; Yang, K.; Wang, H.; Guo, Z.; Chen, Q., Novel Metal Polyphenol Framework for MR Imaging-Guided Photothermal Therapy. ACS Appl Mater Interfaces 2018, 10 (4), 3295-3304.
    17. Chabera, P.; Liu, Y.; Prakash, O.; Thyrhaug, E.; Nahhas, A. E.; Honarfar, A.; Essen, S.; Fredin, L. A.; Harlang, T. C.; Kjaer, K. S.; Handrup, K.; Ericson, F.; Tatsuno, H.; Morgan, K.; Schnadt, J.; Haggstrom, L.; Ericsson, T.; Sobkowiak, A.; Lidin, S.; Huang, P.; Styring, S.; Uhlig, J.; Bendix, J.; Lomoth, R.; Sundstrom, V.; Persson, P.; Warnmark, K., A low-spin Fe(iii) complex with 100-ps ligand-to-metal charge transfer photoluminescence. Nature 2017, 543 (7647), 695-699.
    18. Fujisawa, J.; Eda, T.; Hanaya, M., Interfacial Charge-Transfer Transitions in BaTiO3 Nanoparticles Adsorbed with Catechol. Journal of Physical Chemistry C 2016, 120 (38), 21162-21168.
    19. Ejima, H.; Richardson, J. J.; Liang, K.; Best, J. P.; van Koeverden, M. P.; Such, G. K.; Cui, J. W.; Caruso, F., One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering. Science 2013, 341 (6142), 154-157.
    20. Ejima, H.; Richardson, J. J.; Caruso, F., Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces. Nano Today 2017, 12, 136-148.
    21. Hayatsu, H.; Arimoto, S.; Negishi, T., Dietary inhibitors of mutagenesis and carcinogenesis. Mutat Res 1988, 202 (2), 429-46.
    22. Mukhtar, H.; Das, M.; Khan, W. A.; Wang, Z. Y.; Bik, D. P.; Bickers, D. R., Exceptional activity of tannic acid among naturally occurring plant phenols in protecting against 7,12-dimethylbenz(a)anthracene-, benzo(a)pyrene-, 3-methylcholanthrene-, and N-methyl-N-nitrosourea-induced skin tumorigenesis in mice. Cancer Res 1988, 48 (9), 2361-5.
    23. Chung, K. T.; Lu, Z.; Chou, M. W., Mechanism of inhibition of tannic acid and related compounds on the growth of intestinal bacteria. Food Chem Toxicol 1998, 36 (12), 1053-60.
    24. Kim, T. J.; Silva, J. L.; Kim, M. K.; Jung, Y. S., Enhanced antioxidant capacity and antimicrobial activity of tannic acid by thermal processing. Food Chemistry 2010, 118 (3), 740-746.
    25. Barrett, D. G.; Sileika, T. S.; Messersmith, P. B., Molecular diversity in phenolic and polyphenolic precursors of tannin-inspired nanocoatings. Chem Commun (Camb) 2014, 50 (55), 7265-8.
    26. Geissler, S.; Barrantes, A.; Tengvall, P.; Messersmith, P. B.; Tiainen, H., Deposition Kinetics of Bioinspired Phenolic Coatings on Titanium Surfaces. Langmuir 2016, 32 (32), 8050-60.
    27. Lim, E.-K.; Kim, T.; Paik, S.; Haam, S.; Huh, Y.-M.; Lee, K., Nanomaterials for Theranostics: Recent Advances and Future Challenges. Chemical reviews 2015, 115 (1), 327-394.
    28. Weissleder, R., A clearer vision for in vivo imaging. Nat Biotech 2001, 19 (4), 316-317.
    29. Cheng, L.; Wang, C.; Feng, L.; Yang, K.; Liu, Z., Functional Nanomaterials for Phototherapies of Cancer. Chemical reviews 2014, 114 (21), 10869-10939.
    30. Ray, P. C.; Khan, S. A.; Singh, A. K.; Senapati, D.; Fan, Z., Nanomaterials for targeted detection and photothermal killing of bacteria. Chemical Society Reviews 2012, 41 (8), 3193-3209.
    31. Liu, Y. T.; Zhou, J.; Yuan, X. C.; Jiang, T.; Petti, L.; Zhou, L.; Mormile, P., Hydrothermal synthesis of gold polyhedral nanocrystals by varying surfactant concentration and their LSPR and SERS properties. Rsc Advances 2015, 5 (84), 68668-68675.
    32. Sugiura, T.; Matsuki, D.; Okajima, J.; Komiya, A.; Mori, S.; Maruyama, S.; Kodama, T., Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light with controlled surface cooling. Nano Research 2015, 8 (12), 3842-3852.
    33. Alarcon, E. I.; Udekwu, K.; Skog, M.; Pacioni, N. L.; Stamplecoskie, K. G.; Gonzalez-Bejar, M.; Polisetti, N.; Wickham, A.; Richter-Dahlfors, A.; Griffith, M.; Scaiano, J. C., The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials 2012, 33 (19), 4947-56.
    34. Donaldson, K.; Murphy, F. A.; Duffin, R.; Poland, C. A., Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 2010, 7, 5.
    35. Soenen, S. J.; Parak, W. J.; Rejman, J.; Manshian, B., (Intra)Cellular Stability of Inorganic Nanoparticles: Effects on Cytotoxicity, Particle Functionality, and Biomedical Applications. Chemical reviews 2015, 115 (5), 2109-2135.
    36. Link, S.; Wang, Z. L.; El-Sayed, M. A., How Does a Gold Nanorod Melt? The Journal of Physical Chemistry B 2000, 104 (33), 7867-7870.
    37. Moon, H. K.; Lee, S. H.; Choi, H. C., In Vivo Near-Infrared Mediated Tumor Destruction by Photothermal Effect of Carbon Nanotubes. Acs Nano 2009, 3 (11), 3707-3713.
    38. Robinson, J. T.; Tabakman, S. M.; Liang, Y.; Wang, H.; Sanchez Casalongue, H.; Vinh, D.; Dai, H., Ultrasmall Reduced Graphene Oxide with High Near-Infrared Absorbance for Photothermal Therapy. Journal of the American Chemical Society 2011, 133 (17), 6825-6831.
    39. Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S. T.; Liu, Z., Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 2010, 10 (9), 3318-23.
    40. Li, Y.; Lu, W.; Huang, Q.; Huang, M.; Li, C.; Chen, W., Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine (Lond) 2010, 5 (8), 1161-71.
    41. Yang, K.; Xu, H.; Cheng, L.; Sun, C.; Wang, J.; Liu, Z., In Vitro and In Vivo Near-Infrared Photothermal Therapy of Cancer Using Polypyrrole Organic Nanoparticles. Advanced Materials 2012, 24 (41), 5586-5592.
    42. Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H. L.; Kim, C.; Rubinstein, J. L.; Chan, W. C. W.; Cao, W. G.; Wang, L. V.; Zheng, G., Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nature Materials 2011, 10 (4), 324-332.
    43. Lartigue, L.; Alloyeau, D.; Kolosnjaj-Tabi, J.; Javed, Y.; Guardia, P.; Riedinger, A.; Péchoux, C.; Pellegrino, T.; Wilhelm, C.; Gazeau, F., Biodegradation of Iron Oxide Nanocubes: High-Resolution In Situ Monitoring. Acs Nano 2013, 7 (5), 3939-3952.
    44. Zhou, Z.; Sun, Y.; Shen, J.; Wei, J.; Yu, C.; Kong, B.; Liu, W.; Yang, H.; Yang, S.; Wang, W., Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials 2014, 35 (26), 7470-8.
    45. Dunn, A. W.; Ehsan, S. M.; Mast, D.; Pauletti, G. M.; Xu, H.; Zhang, J.; Ewing, R. C.; Shi, D., Photothermal effects and toxicity of Fe3O4 nanoparticles via near infrared laser irradiation for cancer therapy. Mater Sci Eng C Mater Biol Appl 2015, 46, 97-102.
    46. Shen, S.; Wang, S.; Zheng, R.; Zhu, X.; Jiang, X.; Fu, D.; Yang, W., Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials 2015, 39, 67-74.
    47. Zheng, R.; Wang, S.; Tian, Y.; Jiang, X. G.; Fu, D. L.; Shen, S.; Yang, W. L., Polydopamine-Coated Magnetic Composite Particles with an Enhanced Photothermal Effect. Acs Applied Materials & Interfaces 2015, 7 (29), 15876-15884.
    48. Institute, A. N. S.; America, L. I. o., American National Standard for Safe Use of Lasers. Laser Institute of America: 2014.
    49. Espinosa, A.; Di Corato, R.; Kolosnjaj-Tabi, J.; Flaud, P.; Pellegrino, T.; Wilhelm, C., Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. Acs Nano 2016, 10 (2), 2436-2446.
    50. Lai, J.; Shah, B. P.; Zhang, Y.; Yang, L.; Lee, K.-B., Real-Time Monitoring of ATP-Responsive Drug Release Using Mesoporous-Silica-Coated Multicolor Upconversion Nanoparticles. Acs Nano 2015, 9 (5), 5234-5245.
    51. Mo, R.; Jiang, T.; DiSanto, R.; Tai, W.; Gu, Z., ATP-triggered anticancer drug delivery. Nat Commun 2014, 5, 3364.
    52. Song, X. R.; Li, S. H.; Dai, J. Y.; Song, L.; Huang, G. M.; Lin, R. H.; Li, J.; Liu, G.; Yang, H. H., Polyphenol-Inspired Facile Construction of Smart Assemblies for ATP- and pH-Responsive Tumor MR/Optical Imaging and Photothermal Therapy. Small 2017, 13 (20), 8.
    53. Park, B. C.; Kim, H. D.; Park, J.; Kim, Y. J.; Kim, Y. K., Photonic Reactions Leading to Fluorescence in a Polymeric System Induced by the Photothermal Effect of Magnetite Nanoparticles Using a 780 nm Multiphoton Laser. Small 2017, 13 (37).
    54. Peng, H. B.; Tang, J.; Zheng, R.; Guo, G. N.; Dong, A. G.; Wang, Y. J.; Yang, W. L., Nuclear-Targeted Multifunctional Magnetic Nanoparticles for Photothermal Therapy. Advanced Healthcare Materials 2017, 6 (7), 12.
    55. Shen, S.; Ding, B.; Zhang, S. C.; Qi, X. Y.; Wang, K.; Tian, J.; Yan, Y. S.; Ge, Y. R.; Wu, L., Near-infrared light-responsive nanoparticles with thermosensitive yolk-shell structure for multimodal imaging and chemo-photothermal therapy of tumor. Nanomedicine-Nanotechnology Biology and Medicine 2017, 13 (5), 1607-1616.
    56. Yu, T. J.; Li, P. H.; Tseng, T. W.; Chen, Y. C., Multifunctional Fe3O4/alumina core/shell MNPs as photothermal agents for targeted hyperthermia of nosocomial and antibiotic-resistant bacteria. Nanomedicine 2011, 6 (8), 1353-1363.
    57. Wu, M. C.; Deokar, A. R.; Liao, J. H.; Shih, P. Y.; Ling, Y. C., Graphene-Based Photothermal Agent for Rapid and Effective Killing of Bacteria. Acs Nano 2013, 7 (2), 1281-1290.
    58. Zhang, Y.; Nayak, T. R.; Hong, H.; Cai, W., Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 2012, 4 (13), 3833-42.
    59. Jeong, C. J.; Sharker, S. M.; In, I.; Park, S. Y., Iron Oxide@PEDOT-Based Recyclable Photothermal Nanoparticles with Poly(vinylpyrrolidone) Sulfobetairies for Rapid and Effective Antibacterial Activity. Acs Applied Materials & Interfaces 2015, 7 (18), 9469-9478.
    60. Silva, Zenildo S.; Bussadori, Sandra K.; Fernandes, K. Porta S.; Huang, Y.-Y.; Hamblin, Michael R., Animal models for photodynamic therapy (PDT). Bioscience Reports 2015, 35 (6).
    61. Castano, A. P.; Demidova, T. N.; Hamblin, M. R., Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther 2004, 1 (4), 279-93.
    62. João, P.; Tardivo, J.; Auro, D.; Giglio, A.; Santos De Oliveira, C.; Santesso Gabrielli, D.; Junqueira, H.; Tada, D.; Severino, D.; De, R.; Turchiello, F.; Baptista, M., Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications. 2005; Vol. 2.
    63. Yu, J.; Hsu, C. H.; Huang, C. C.; Chang, P. Y., Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells. ACS Appl Mater Interfaces 2015, 7 (1), 432-41.
    64. Bai, J.; Jia, X.; Zhen, W.; Cheng, W.; Jiang, X., A Facile Ion-Doping Strategy To Regulate Tumor Microenvironments for Enhanced Multimodal Tumor Theranostics. Journal of the American Chemical Society 2017, 140 (1), 106-109.
    65. Zheng, D. W.; Lei, Q.; Zhu, J. Y.; Fan, J. X.; Li, C. X.; Li, C.; Xu, Z.; Cheng, S. X.; Zhang, X. Z., Switching Apoptosis to Ferroptosis: Metal-Organic Network for High-Efficiency Anticancer Therapy. Nano Lett 2017, 17 (1), 284-291.
    66. Ju, E.; Dong, K.; Chen, Z.; Liu, Z.; Liu, C.; Huang, Y.; Wang, Z.; Pu, F.; Ren, J.; Qu, X., Copper(II)-Graphitic Carbon Nitride Triggered Synergy: Improved ROS Generation and Reduced Glutathione Levels for Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2016, 55 (38), 11467-71.
    67. Yang, W. S.; Stockwell, B. R., Ferroptosis: Death by Lipid Peroxidation. Trends Cell Biol 2016, 26 (3), 165-176.
    68. Majeed, M. I.; Lu, Q.; Yan, W.; Li, Z.; Hussain, I.; Tahir, M. N.; Tremel, W.; Tan, B., Highly water-soluble magnetic iron oxide (Fe3O4) nanoparticles for drug delivery: enhanced in vitro therapeutic efficacy of doxorubicin and MION conjugates. Journal of Materials Chemistry B 2013, 1 (22), 2874-2884.
    69. Seabra, A. B., Iron Oxide Magnetic Nanoparticles in Photodynamic Therapy: A Promising Approach Against Tumor Cells. In Metal Nanoparticles in Pharma, Rai, P. D. M.; Shegokar, P. D. R., Eds. Springer International Publishing: Cham, 2017; pp 3-20.
    70. Wang, D.; Fei, B.; Halig, L. V.; Qin, X.; Hu, Z.; Xu, H.; Wang, Y. A.; Chen, Z.; Kim, S.; Shin, D. M.; Chen, Z., Targeted Iron-Oxide Nanoparticle for Photodynamic Therapy and Imaging of Head and Neck Cancer. Acs Nano 2014, 8 (7), 6620-6632.
    71. Organization, W. H., The Evolving Threat of Antimicrobial Resistance: Options for Action. World Health Organization: 2012.
    72. Enright, M. C.; Day, N. P.; Davies, C. E.; Peacock, S. J.; Spratt, B. G., Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 2000, 38 (3), 1008-15.
    73. CDC Antibiotic / Antimicrobial Resistance. https://www.cdc.gov/drugresistance/ (accessed September 8).
    74. Jones, K. E.; Patel, N. G.; Levy, M. A.; Storeygard, A.; Balk, D.; Gittleman, J. L.; Daszak, P., Global trends in emerging infectious diseases. Nature 2008, 451 (7181), 990-993.
    75. Kline, K. A.; Falker, S.; Dahlberg, S.; Normark, S.; Henriques-Normark, B., Bacterial adhesins in host-microbe interactions. Cell Host Microbe 2009, 5 (6), 580-92.
    76. Klemm, P.; Schembri, M. A., Bacterial adhesins: function and structure. International Journal of Medical Microbiology 2000, 290 (1), 27-35.
    77. Lichter, J. A.; Van Vliet, K. J.; Rubner, M. F., Design of Antibacterial Surfaces and Interfaces: Polyelectrolyte Multilayers as a Multifunctional Platform. Macromolecules 2009, 42 (22), 8573-8586.
    78. Connell, H.; Agace, W.; Klemm, P.; Schembri, M.; Marild, S.; Svanborg, C., Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proceedings of the National Academy of Sciences of the United States of America 1996, 93 (18), 9827-9832.
    79. Park, J. C.; Lee, G. T.; Seo, J. H., Mannose-functionalized core@shell nanoparticles and their interactions with bacteria. Journal of Materials Science 2017, 52 (3), 1534-1545.
    80. Liu, M.; Li, J.; Li, B., Mannose-Modificated Polyethylenimine: A Specific and Effective Antibacterial Agent against Escherichia coli. Langmuir 2018, 34 (4), 1574-1580.
    81. Sauer, M. M.; Jakob, R. P.; Eras, J.; Baday, S.; Eris, D.; Navarra, G.; Berneche, S.; Ernst, B.; Maier, T.; Glockshuber, R., Catch-bond mechanism of the bacterial adhesin FimH. Nat Commun 2016, 7, 10738.
    82. Schembri, M. A.; Kjaergaard, K.; Sokurenko, E. V.; Klemm, P., Molecular Characterization of the Escherichia coli FimH Adhesin. The Journal of Infectious Diseases 2001, 183 (Supplement_1), S28-S31.
    83. Pera, N. P.; Pieters, R. J., Towards bacterial adhesion-based therapeutics and detection methods. Med. Chem. Commun. 2014, 5 (8), 1027-1035.
    84. Kim, J. S.; Kuk, E.; Yu, K. N.; Kim, J. H.; Park, S. J.; Lee, H. J.; Kim, S. H.; Park, Y. K.; Park, Y. H.; Hwang, C. Y.; Kim, Y. K.; Lee, Y. S.; Jeong, D. H.; Cho, M. H., Antimicrobial effects of silver nanoparticles. Nanomedicine-Nanotechnology Biology and Medicine 2007, 3 (1), 95-101.
    85. Liu, J.; Zhao, Z.; Feng, H.; Cui, F., One-pot synthesis of Ag–Fe3O4 nanocomposites in the absence of additional reductant and its potent antibacterial properties. Journal of Materials Chemistry 2012, 22 (28).
    86. Mosaiab, T.; Jeong, C. J.; Shin, G. J.; Choi, K. H.; Lee, S. K.; Lee, I.; In, I.; Park, S. Y., Recyclable and stable silver deposited magnetic nanoparticles with poly (vinyl pyrrolidone)-catechol coated iron oxide for antimicrobial activity. Mater Sci Eng C Mater Biol Appl 2013, 33 (7), 3786-94.
    87. Applerot, G.; Lellouche, J.; Lipovsky, A.; Nitzan, Y.; Lubart, R.; Gedanken, A.; Banin, E., Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 2012, 8 (21), 3326-37.
    88. Nor, Y. A.; Zhou, L.; Meka, A. K.; Xu, C.; Niu, Y. T.; Zhang, H. W.; Mitter, N.; Mahony, D.; Yu, C. Z., Engineering Iron Oxide Hollow Nanospheres to Enhance Antimicrobial Property: Understanding the Cytotoxic Origin in Organic Rich Environment. Advanced Functional Materials 2016, 26 (30), 5408-5418.
    89. Bandyopadhyay, S.; Peralta-Videa, J. R.; Plascencia-Villa, G.; Jose-Yacaman, M.; Gardea-Torresdey, J. L., Comparative toxicity assessment of CeO2 and ZnO nanoparticles towards Sinorhizobium meliloti, a symbiotic alfalfa associated bacterium: use of advanced microscopic and spectroscopic techniques. J Hazard Mater 2012, 241-242, 379-86.
    90. Pillai, P. P.; Kowalczyk, B.; Kandere-Grzybowska, K.; Borkowska, M.; Grzybowski, B. A., Engineering Gram Selectivity of Mixed-Charge Gold Nanoparticles by Tuning the Balance of Surface Charges. Angew Chem Int Ed Engl 2016, 55 (30), 8610-4.
    91. Arakha, M.; Pal, S.; Samantarrai, D.; Panigrahi, T. K.; Mallick, B. C.; Pramanik, K.; Mallick, B.; Jha, S., Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep 2015, 5, 14813.
    92. Liu, L. H.; Dietsch, H.; Schurtenberger, P.; Yan, M. D., Photoinitiated Coupling of Unmodified Monosaccharides to Iron Oxide Nanoparticles for Sensing Proteins and Bacteria. Bioconjugate Chemistry 2009, 20 (7), 1349-1355.
    93. Guo, X.; Kulkarni, A.; Doepke, A.; Halsall, H. B.; Iyer, S.; Heineman, W. R., Carbohydrate-Based Label-Free Detection of Escherichia coli ORN 178 Using Electrochemical Impedance Spectroscopy. Analytical Chemistry 2012, 84 (1), 241-246.
    94. Vedantam, P.; Tzeng, T.-R. J.; Brown, A. K.; Podila, R.; Rao, A.; Staley, K., Binding of Escherichia coli to Functionalized Gold Nanoparticles. Plasmonics 2012, 7 (2), 301-308.
    95. Bernardi, A.; Jimenez-Barbero, J.; Casnati, A.; De Castro, C.; Darbre, T.; Fieschi, F.; Finne, J.; Funken, H.; Jaeger, K. E.; Lahmann, M.; Lindhorst, T. K.; Marradi, M.; Messner, P.; Molinaro, A.; Murphy, P. V.; Nativi, C.; Oscarson, S.; Penades, S.; Peri, F.; Pieters, R. J.; Renaudet, O.; Reymond, J. L.; Richichi, B.; Rojo, J.; Sansone, F.; Schaffer, C.; Turnbull, W. B.; Velasco-Torrijos, T.; Vidal, S.; Vincent, S.; Wennekes, T.; Zuilhof, H.; Imberty, A., Multivalent glycoconjugates as anti-pathogenic agents. Chem Soc Rev 2013, 42 (11), 4709-27.
    96. Nguyen, T. K.; Duong, H. T.; Selvanayagam, R.; Boyer, C.; Barraud, N., Iron oxide nanoparticle-mediated hyperthermia stimulates dispersal in bacterial biofilms and enhances antibiotic efficacy. Sci Rep 2015, 5, 18385.
    97. Raval, Y. S.; Fellows, B. D.; Murbach, J.; Cordeau, Y.; Mefford, O. T.; Tzeng, T.-R. J., Multianchored Glycoconjugate-Functionalized Magnetic Nanoparticles: A Tool for Selective Killing of Targeted Bacteria via Alternating Magnetic Fields. Advanced Functional Materials 2017, 27 (26).
    98. Stankic, S.; Suman, S.; Haque, F.; Vidic, J., Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J Nanobiotechnology 2016, 14 (1), 73.
    99. Zhang, W. T.; Shi, S.; Wang, Y. R.; Yu, S. X.; Zhu, W. X.; Zhang, X.; Zhang, D. H.; Yang, B. W.; Wang, X.; Wang, J. L., Versatile molybdenum disulfide based antibacterial composites for in vitro enhanced sterilization and in vivo focal infection therapy. Nanoscale 2016, 8 (22), 11642-11648.
    100. Mazrad Zihnil, A. I.; In, I.; Park, S. Y., Reusable Fe3O4 and WO3 immobilized onto montmorillonite as a photo-reactive antimicrobial agent. Rsc Advances 2016, 6 (59), 54486-54494.
    101. Mazrad, Z. A. I.; Choi, C. A.; Kwon, Y. M.; In, I.; Lee, K. D.; Park, S. Y., Design of Surface-Coatable NIR-Responsive Fluorescent Nanoparticles with PEI Passivation for Bacterial Detection and Killing. Acs Applied Materials & Interfaces 2017, 9 (38), 33317-33326.
    102. Jin, Y. J.; Deng, J.; Yu, J.; Yang, C.; Tong, M. P.; Hou, Y. L., Fe5C2 nanoparticles: a reusable bactericidal material with photothermal effects under near-infrared irradiation. Journal of Materials Chemistry B 2015, 3 (19), 3993-4000.
    103. Huang, J. L.; Zhou, J. F.; Zhuang, J. Y.; Gao, H. Z.; Huang, D. H.; Wang, L. X.; Wu, W. L.; Li, Q. B.; Yang, D. P.; Han, M. Y., Strong Near-Infrared Absorbing and Biocompatible CuS Nanoparticles for Rapid and Efficient Photothermal Ablation of Gram-Positive and -Negative Bacteria. Acs Applied Materials & Interfaces 2017, 9 (42), 36606-36614.
    104. Wang, B.; Feng, G.; Seifrid, M.; Wang, M.; Liu, B.; Bazan Guillermo, C., Antibacterial Narrow‐Band‐Gap Conjugated Oligoelectrolytes with High Photothermal Conversion Efficiency. Angewandte Chemie International Edition 2017, 56 (50), 16063-16066.
    105. Nagao, K.; Miyaji, H.; Nishida, E.; Akasaka, T.; Miyata, S.; Shitomi, K.; Mayumi, K.; Kato, A.; Sugaya, T., Near-infrared Irradiation and Graphene Oxide Film Fabricated on Dentin Surface Exhibit Photothermal and Antibacterial Effects. 2018; Vol. 06.
    106. Ma, S.; Zhan, S.; Jia, Y.; Zhou, Q., Superior Antibacterial Activity of Fe3O4-TiO2 Nanosheets under Solar Light. ACS Appl Mater Interfaces 2015, 7 (39), 21875-83.
    107. Padhi, D. K.; Panigrahi, T. K.; Parida, K.; Singh, S. K.; Mishra, P. M., Green Synthesis of Fe3O4/RGO Nanocomposite with Enhanced Photocatalytic Performance for Cr(VI) Reduction, Phenol Degradation, and Antibacterial Activity. ACS Sustainable Chemistry & Engineering 2017, 5 (11), 10551-10562.
    108. Sahiner, N.; Butun Sengel, S.; Yildiz, M., A facile preparation of donut-like supramolecular tannic acid-Fe(III) composite as biomaterials with magnetic, conductive, and antioxidant properties. Journal of Coordination Chemistry 2017, 70 (21), 3619-3632.
    109. Ma, X.; Zhao, Y.; Liang, X.-J., Theranostic Nanoparticles Engineered for Clinic and Pharmaceutics. Accounts of Chemical Research 2011, 44 (10), 1114-1122.
    110. Shen, Z.; Song, J.; Yung, B. C.; Zhou, Z.; Wu, A.; Chen, X., Emerging Strategies of Cancer Therapy Based on Ferroptosis. Adv Mater 2018, 30 (12), e1704007.
    111. Roper, D. K.; Ahn, W.; Hoepfner, M., Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles. The Journal of Physical Chemistry C 2007, 111 (9), 3636-3641.
    112. Vayssières, L.; Chanéac, C.; Tronc, E.; Jolivet, J. P., Size Tailoring of Magnetite Particles Formed by Aqueous Precipitation: An Example of Thermodynamic Stability of Nanometric Oxide Particles. Journal of Colloid and Interface Science 1998, 205 (2), 205-212.
    113. Patterson, A. L., The Scherrer Formula for X-Ray Particle Size Determination. Physical Review 1939, 56 (10), 978-982.
    114. Wang, Y.; Li, B.; Zhou, Y.; Jia, D., In Situ Mineralization of Magnetite Nanoparticles in Chitosan Hydrogel. Nanoscale Res Lett 2009, 4 (9), 1041-1046.
    115. Leyva-Ramos, R.; Jacobo-Azuara, A.; Diaz-Flores, P. E.; Guerrero-Coronado, R. M.; Mendoza-Barron, J.; Berber-Mendoza, M. S., Adsorption of chromium(VI) from an aqueous solution on a surfactant-modified zeolite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 330 (1), 35-41.
    116. Lin, J.; Zhan, Y.; Zhu, Z.; Xing, Y., Adsorption of tannic acid from aqueous solution onto surfactant-modified zeolite. J Hazard Mater 2011, 193, 102-111.
    117. Rahim, M. A.; Ejima, H.; Cho, K. L.; Kempe, K.; Müllner, M.; Best, J. P.; Caruso, F., Coordination-Driven Multistep Assembly of Metal–Polyphenol Films and Capsules. Chemistry of Materials 2014, 26 (4), 1645-1653.
    118. Cakar, S.; Ozacar, M., Fe-tannic acid complex dye as photo sensitizer for different morphological ZnO based DSSCs. Spectrochim Acta A Mol Biomol Spectrosc 2016, 163, 79-88.
    119. Watts John, F., High resolution XPS of organic polymers: The Scienta ESCA 300 database. G. Beamson and D. Briggs. 280pp., £65. John Wiley & Sons, Chichester, ISBN 0471 935921, (1992). Surface and Interface Analysis 1993, 20 (3), 267-267.
    120. Dietrich, P. M.; Horlacher, T.; Girard-Lauriault, P.-L.; Gross, T.; Lippitz, A.; Min, H.; Wirth, T.; Castelli, R.; Seeberger, P.; Unger, W. E. S., Multimethod Chemical Characterization of Carbohydrate-Functionalized Surfaces. Journal of Carbohydrate Chemistry 2011, 30 (4-6), 361-372.
    121. Karch, H.; Tarr, P. I.; Bielaszewska, M., Enterohaemorrhagic Escherichia coli in human medicine. International Journal of Medical Microbiology 2005, 295 (6), 405-418.
    122. Rawat, D.; Nair, D., Extended-spectrum β-lactamases in Gram Negative Bacteria. Journal of Global Infectious Diseases 2010, 2 (3), 263-274.
    123. Rubio-Perez, I.; Martin-Perez, E.; Garcia, D. D.; Calvo, M. L.-B.; Barrera, E. L., Extended-spectrum beta-lactamase-producing bacteria in a tertiary care hospital in Madrid: epidemiology, risk factors and antimicrobial susceptibility patterns. Emerging Health Threats Journal 2012, 5, 10.3402/ehtj.v5i0.11589.
    124. Institue, N. C. About Cancer-Diagnosis and Staging-Prognosis. https://www.cancer.gov/about-cancer/diagnosis-staging/prognosis/tumor-grade-fact-sheet.
    125. Tang, Q.; Xiao, W.; Huang, C.; Si, W.; Shao, J.; Huang, W.; Chen, P.; Zhang, Q.; Dong, X., pH-Triggered and Enhanced Simultaneous Photodynamic and Photothermal Therapy Guided by Photoacoustic and Photothermal Imaging. Chemistry of Materials 2017, 29 (12), 5216-5224.
    126. Wang, Y. Z.; Xie, Y.; Li, J.; Peng, Z. H.; Sheinin, Y.; Zhou, J. P.; Oupicky, D., Tumor-Penetrating Nanoparticles for Enhanced Anticancer Activity of Combined Photodynamic and Hypoxia-Activated Therapy. Acs Nano 2017, 11 (2), 2227-2238.
    127. Ding, Y. F.; Li, S. K.; Liang, L. J.; Huang, Q. X.; Yuwen, L. H.; Yang, W. J.; Wang, R. B.; Wang, L. H., Highly Biocompatible Chlorin e6-Loaded Chitosan Nanoparticles for Improved Photodynamic Cancer Therapy. Acs Applied Materials & Interfaces 2018, 10 (12), 9980-9987.
    128. Lismont, M.; Dreesen, L.; Wuttke, S., Metal-Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives. Advanced Functional Materials 2017, 27 (14), 16.
    129. Ortega, A. L.; Mena, S.; Estrela, J. M., Glutathione in Cancer Cell Death. Cancers 2011, 3 (1), 1285-1310.
    130. Drummen, G. P. C.; van Liebergen, L. C. M.; Op den Kamp, J. A. F.; Post, J. A., C11-BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radical Biology and Medicine 2002, 33 (4), 473-490.
    131. Yuwen, L.; Zhou, J.; Zhang, Y.; Zhang, Q.; Shan, J.; Luo, Z.; Weng, L.; Teng, Z.; Wang, L., Aqueous phase preparation of ultrasmall MoSe2 nanodots for efficient photothermal therapy of cancer cells. Nanoscale 2016, 8 (5), 2720-2726.
    132. S., C. S.; Bryan, K.; Jaemyung, K.; M., F. B.; Mrinmoy, D.; E., H. P.; Jiaxing, H.; Jeffrey, B. C.; P., D. V., Chemically Exfoliated MoS2 as Near‐Infrared Photothermal Agents. Angewandte Chemie 2013, 125 (15), 4254-4258.
    133. Chou Stanley, S.; Kaehr, B.; Kim, J.; Foley Brian, M.; De, M.; Hopkins Patrick, E.; Huang, J.; Brinker, C. J.; Dravid Vinayak, P., Chemically Exfoliated MoS2 as Near‐Infrared Photothermal Agents. Angewandte Chemie 2013, 125 (15), 4254-4258.
    134. Hessel, C. M.; Pattani, V. P.; Rasch, M.; Panthani, M. G.; Koo, B.; Tunnell, J. W.; Korgel, B. A., Copper Selenide Nanocrystals for Photothermal Therapy. Nano Letters 2011, 11 (6), 2560-2566.
    135. Tian, Q.; Jiang, F.; Zou, R.; Liu, Q.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J., Hydrophilic Cu9S5 Nanocrystals: A Photothermal Agent with a 25.7% Heat Conversion Efficiency for Photothermal Ablation of Cancer Cells in Vivo. Acs Nano 2011, 5 (12), 9761-9771.
    136. Tai, Y. W.; Chiu, Y. C.; Wu, P. T.; Yu, J.; Chin, Y. C.; Wu, S. P.; Chuang, Y. C.; Hsieh, H. C.; Lai, P. S.; Yu, H. P.; Liao, M. Y., Degradable NIR-PTT Nanoagents with a Potential Cu@Cu2O@Polymer Structure. ACS Appl Mater Interfaces 2018, 10 (6), 5161-5174.
    137. Teng, L.; Chao, W.; Xing, G.; Hua, G.; Liang, C.; Xiaoze, S.; Liangzhu, F.; Baoquan, S.; Zhuang, L., Drug Delivery with PEGylated MoS2 Nano‐sheets for Combined Photothermal and Chemotherapy of Cancer. Advanced Materials 2014, 26 (21), 3433-3440.
    138. Fu, T.; Chen, Y.; Hao, J.; Wang, X.; Liu, G.; Li, Y.; Liu, Z.; Cheng, L., Facile preparation of uniform FeSe2 nanoparticles for PA/MR dual-modal imaging and photothermal cancer therapy. Nanoscale 2015, 7 (48), 20757-20768.
    139. Tan, C. L.; Zhao, L. Z.; Yu, P.; Huang, Y.; Chen, B.; Lai, Z. C.; Qi, X. Y.; Goh, M. H.; Zhang, X.; Han, S. K.; Wu, X. J.; Liu, Z.; Zhao, Y. L.; Zhang, H., Preparation of Ultrathin Two-Dimensional TixTa1-xSyOz Nanosheets as Highly Efficient Photothermal Agents. Angewandte Chemie-International Edition 2017, 56 (27), 7842-7846.
    140. Kam, N. W. S.; O'Connell, M.; Wisdom, J. A.; Dai, H., Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (33), 11600-11605.
    141. Tian, J.; Zhu, H.; Chen, J.; Zheng, X.; Duan, H.; Pu, K.; Chen, P., Cobalt Phosphide Double‐Shelled Nanocages: Broadband Light‐Harvesting Nanostructures for Efficient Photothermal Therapy and Self‐Powered Photoelectrochemical Biosensing. Small 2017, 13 (22), 1700798.
    142. Xuan, J.; Wang, Z.; Chen, Y.; Liang, D.; Cheng, L.; Yang, X.; Liu, Z.; Ma, R.; Sasaki, T.; Geng, F., Organic‐Base‐Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. Angewandte Chemie 2016, 128 (47), 14789-14794.

    下載圖示 校內:2025-09-01公開
    校外:2025-09-01公開
    QR CODE