簡易檢索 / 詳目顯示

研究生: 李妱頤
Lee, Chao-Yi
論文名稱: 以DLP立體光刻技術成型多晶氧化鋁陶瓷
Fabrication of polycrystalline alumina ceramics by using digital light process stereolithography
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 70
中文關鍵詞: ⍺-氧化鋁感光樹脂DLP成型立體光刻技術玻璃轉換溫度
外文關鍵詞: ⍺-alumina, photocurable resin, DLP, stereolithography, glass transition point
相關次數: 點閱:66下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以常見的高分子3D列印技術—DLP立體光刻技術成型⍺-氧化鋁陶瓷生胚。將陶瓷粉加入感光樹脂中,以光固化的方式聚合漿料中的感光樹脂,則可不經機械加工及開模就生產出形狀複雜的陶瓷器件。以次微米級或奈米級陶瓷粉末作為原料,可將燒結體的晶粒控制在微米級尺寸,建立未來製作形狀複雜之透光或透明氧化鋁陶瓷的基礎。然而相較於微米級陶瓷原粉,以平均粒徑為次微米級的起始粉末進行DLP成型陶瓷體,需要克服非水系感光樹脂中分散不易和列印過程中收縮率大的問題,這些都會造成列印後成品中產生缺陷。
    本研究以平均粒徑180 nm之⍺-氧化鋁粉末分散於感光樹脂中,配製出固含量達40 vol%漿料,在剪切速率1 s-1和30 s-1時黏度分別低於1.5 Pa.s和0.5 Pa.s。接著比較兩種感光樹脂系統列印後成品脫脂後缺陷的差異,以探討固化過程中垂直裂紋和水平層裂等缺陷的成因。藉由調整感光樹脂種類、添加可塑劑控制玻璃轉換溫度,來解決生胚中的缺陷。研究結果顯示添加可塑劑至黏結劑與可塑劑比例為8:2時,可有效解決垂直裂紋與水平層裂。在含有寡聚物且玻璃轉換溫度高於室溫的系統中,氧化鋁胚體燒結後密度可達94%且平均抗彎強度達340 MPa。而在感光樹脂由單體組成的溶劑系統中,玻璃轉換溫度低於室溫,透過冷均壓2 MPa可以完全去除水平疊層方向的層裂,燒結後密度93%,抗彎強度90 MPa。

    The main defects of fabricating high-performance alumina ceramic by using DLP 3D printing are the delamination resulting from the shrinkage during polymerization and porosity in the green body after organic binder burning out. A green body prepared by using a dispersed slurry with higher solid loading exhibits a homogeneous green microstructure with lower porosity and hence a dense sintered body with smaller grains being easily obtained. Moreover, the sinterability of the ceramic material increases with decreasing particle size. However, increasing the solid loading of slurry easily leads to particle agglomeration and hence increasing the viscosity and decreasing the particle size will lead to greater shrinkage during polymerization.
    In this study, a dispersed alumina (particle size of about 180 nm) slurry with solid loading of 40 vol% was prepared as the raw material of DLP 3D printing. The effects of the photocurable resin systems and different amounts of plasticizer, PEG400, on the green microstructure, sintered density and mechanical strength were investigated. It was observed that the optimal resin composition is made up of monomer HDDA and oligomer EA at the ratio of 4:1. For the slurry with Binder/Plasticizer of 8:2, the defects in the sintered body can be fully eliminated and the sintered density and the average flexural strength can reach 94% and 340 MPa, respectively.

    摘要 I 誌謝 XII 目錄 XIII 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 2 第二章 文獻回顧 3 2.1 氧化鋁陶瓷 3 2.2 積層製造(3D列印)[7, 8] 5 2.2.1 DLP立體光刻技術 9 2.2.2 感光樹脂種類對成品強度的影響 11 2.2.3 添加劑對固化的影響 11 2.3 立體光刻技術成型陶瓷 13 2.4 固化後處理 17 2.4.1 清洗溶劑 17 2.4.2 冷均壓 17 2.5 熱處理 18 第三章 實驗方法與分析 19 3.1 起始原料 19 3.1.1 ⍺-氧化鋁 19 3.1.2 有機載體 19 3.2 塊材製備 20 3.2.1 漿料製備 20 3.2.2 立體光刻技術成型法 (Digital Light Process) 22 3.2.3 冷均壓(Cold Isostatic Press) 24 3.2.4 熱處理 24 3.3 漿料分析 25 3.4 翹曲程度的量化 25 3.5 生胚性質分析 26 3.6 燒結體分析 26 3.6.1 密度量測 26 3.6.2 燒結體顯微結構 26 3.6.3 燒結體抗彎強度 27 第四章 結果與討論 28 4.1 漿料流變性質分析 28 4.1.1 不同分散劑對感光樹脂中氧化鋁的流變性質影響 28 4.1.2 不同感光樹脂系統所需的分散劑添加量 31 4.1.3 可塑劑添加量對漿料流變性質的影響 32 4.2 熱分析 34 4.2.1 熱重熱差分析(TG/DTA) 34 4.3 影響生胚顯微結構的因素 36 4.3.1 清洗溶劑對列印後成品的影響 38 4.3.2 離型膜對生胚顯微結構的影響 38 4.3.3 感光樹脂對生胚顯微結構的影響 40 4.3.4 可塑劑添加量對生胚性質的影響 45 4.3.5 冷均壓對生胚層裂的影響 50 4.4 燒結體機械性質 56 4.4.1 燒結表面形貌 56 4.4.2 燒結體密度與顯微結構 61 4.4.3 抗彎強度 65 4.4.4 複雜形狀的氧化鋁陶瓷體 66 第五章 結論 67 參考資料 68

    1. Chen, Z., et al., 3D printing of ceramics: A review. Journal of the European Ceramic Society, 2019. 39(4): p. 661-687.
    2. Shirai, T., et al., Structural properties and surface characteristics on aluminum oxide powders. 2010.
    3. Yalamaç, E., A. Trapani, and S. Akkurt, Sintering and microstructural investigation of gamma–alpha alumina powders. Engineering Science and Technology, an International Journal, 2014. 17(1): p. 2-7.
    4. MUNRO, M., Evaluated material properties for a sintered alpha‐alumina. Journal of the American Ceramic Society, 1997. 80(8): p. 1919-1928.
    5. Wei, G.C., A. Hecker, and D.A. Goodman, Translucent polycrystalline alumina with improved resistance to sodium attack. Journal of the American Ceramic Society, 2001. 84(12): p. 2853-2862.
    6. Apetz, R. and M.P. Van Bruggen, Transparent alumina: a light‐scattering model. Journal of the American Ceramic Society, 2003. 86(3): p. 480-486.
    7. Hull, C.W., Apparatus for production of three-dimensional objects by stereolithography. 1984, 3D Systems Inc: United States.
    8. Weng, Z., et al., Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer. Composites Part A: Applied Science and Manufacturing, 2016. 88: p. 234-242.
    9. Vrancken, B., et al., Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties. Journal of Alloys and Compounds, 2012. 541: p. 177-185.
    10. Billiet, T., et al., A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials, 2012. 33(26): p. 6020-41.
    11. Sujoy Chakravarty, M.G., Harald Schmidt, Ajay Gupta, Effect of compressive stress on Fe self diffusion in nano-crystalline FeN(Zr) thin films. 2005.
    12. Liravi, F., S. Das, and C. Zhou. Separation force analysis based on cohesive delamination model for bottom-up stereolithography using finite element analysis. in 25th Annual International Solid Freeform Fabrication Symposium, Austin, TX, Aug. 2014.
    13. Jacobs, P.F., Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography. 1992.
    14. 何志松 and 王維廷, 探討聚酯壓克力樹脂配方對性質之影響. Journal of Science and Engineering Technology, 2017. 13(2): p. 33-43.
    15. 赵旭, UV 固化快速成型全瓷牙冠关键技术研究. 2017, 兰州理工大学.
    16. Johansson, E., et al., Influence of Resin Composition on the Defect Formation in Alumina Manufactured by Stereolithography. Materials (Basel), 2017. 10(2).
    17. Song, X., Slurry Based Stereolithography: A Solid Freeform Fabrication Method of Ceramics and Composites. UNIVERSITY OF SOUTHERN CALIFORNIA, 2016.
    18. 刘璐, 光固化浆料用氧化锆粉体的制备. 2016, 华中科技大学.
    19. Chen, Z., et al., Mechanical properties and microstructures of 3D printed bulk cordierite parts. Ceramics International, 2019. 45(15): p. 19257-19267.
    20. Bae, C.-J. and J.W. Halloran, Influence of Residual Monomer on Cracking in Ceramics Fabricated by Stereolithography. International Journal of Applied Ceramic Technology, 2011. 8(6): p. 1289-1295.
    21. Chaput, C., C. Thierry, and D. Franck, Method and composition for making ceramic parts by stereolithophotography and use in dentistry. 2005, Google Patents.
    22. Li, K. and Z. Zhao, The effect of the surfactants on the formulation of UV-curable SLA alumina suspension. Ceramics International, 2017. 43(6): p. 4761-4767.
    23. Turnšek, M., et al., Macroporous alumina with cellular interconnected morphology from emulsion templated polymer composite precursors. Journal of the European Ceramic Society, 2016. 36(4): p. 1045-1051.
    24. Darsono, N., D.-H. Yoon, and J. Kim, Milling and dispersion of multi-walled carbon nanotubes in texanol. Applied Surface Science, 2008. 254(11): p. 3412-3419.
    25. Wang, K., et al., Study on defect-free debinding green body of ceramic formed by DLP technology. Ceramics International, 2020. 46(2): p. 2438-2446.
    26. Wu, X., et al., Effects of soft-start exposure on the curing characteristics and flexural strength in ceramic projection stereolithography process. Journal of the European Ceramic Society, 2019. 39(13): p. 3788-3796.
    27. Yogesh, P., et al., Layer Separation Mechanisms in DLP 3D Printing, in Advances in Additive Manufacturing and Joining. 2020, Springer. p. 179-187.
    28. 金养智, 光固化材料性能及应用手册. 2010, Beijing: Chemical Industry Pressꎬ2010.
    29. Qian, R., Perspectives on the macromolecular condensed state. 2002: World Scientific.
    30. Sha, Y., et al., Continuum and discrete modeling of craze failure at a crack tip in a glassy polymer. Macromolecules, 1995. 28(7): p. 2450-2459.
    31. Lee, J.-Y., et al., Nanoparticle alignment and repulsion during failure of glassy polymer nanocomposites. Macromolecules, 2006. 39(21): p. 7392-7396.
    32. Gent, A., Hypothetical mechanism of crazing in glassy plastics. Journal of Materials Science, 1970. 5(11): p. 925-932.

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE