| 研究生: |
連勗閔 Lian, Xu-Min |
|---|---|
| 論文名稱: |
羧甲基丙烯酰胺及其衍生聚合物於對稱式碳超級電容器性能之影響 The effects of carboxybetaine acrylamide and its derived polymers on the performance of the symmetric carbon supercapacitor |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 雙離子 、電雙層電容 、高濃度電解液 、水系電解液 、高導離子度 、高電位視窗 |
| 外文關鍵詞: | zwitterionic polymer, wide electrochemical window, high ionic conductivity, high concentrated electrolyte, aqueous supercapacitor |
| 相關次數: | 點閱:65 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雙離子對在不同方式上的應用具有不同的作用性,可以利用它們實現更寬的電化學電位窗口、更高的導離子度、更穩定的循環壽命以及卓越的能量密度和功率密度。羧基丙氨酸甜菜鹼(CB)具有比其他離子對更好的水合性質和更強的作用力,被認為是優化電解液的主要貢獻因素。從實驗結果中發現,少量添加雙離子確實可以增強它們的導離子度和電容量與穩定性,而過高的濃度則會導致雙離子之間發生自聚效應,因此選擇了含有相同性質並含有雙鍵的羧基丙氨酸甲酰胺(CBAA)來做為整個實驗的主軸。除了將少量的電解質作為添加劑外,還可以通過自由基聚合將雙離子固定在鏈上,形成pCBAA,以藉此希望減少自聚效應的影響並更廣泛地擴大電化學電位窗口。然而,鏈與鏈之間的吸引力無法完全避免,導致其中分散的pCBAA對離子移動的通道影響甚大。最後,我們通過添加少量的交聯劑來解決這個問題,不僅加寬電化學電位視窗,根據交聯劑支撐的空間提供了穩定的離子通道,使自聚效應大大的降低,同時維持雙離子原有的特性,使離子在其中穩定且快速的移動。
The first part of the study analyzed the zwitterion CBAA as an electrolyte additive by adding different weight percentages. It was found that for a fixed range of additive amount, the zwitterion could help the ions in the electrolyte move more quickly due to its characteristic of containing both anions and cations. The conductivity increased with the increase of the additive amount, reaching a maximum of 5.66 mS/cm when adding 10% CBAA. Raman test results showed that as the zwitterion ratio increased, the originally contributing THB gradually shifted towards NTHB and FHB. This indicates a tendency towards ideal capacitance performance in cyclic voltammetry testing, and a slight reduction in the influence of water molecules. The discharge capacitance retention rate reached 91% when changing the current density, and the cycle life of 5000 cycles reached 94.1% of the initial capacitance.
The second part of the study aimed to improve the first part by forming the zwitterion into a linear polymer pCBAA, which fixed the CBAA to capture free water molecules in the solution and expand the shortcomings of its electrochemical potential window. Raman spectroscopy showed that water distribution almost completely shifted from THB to NTHB and FHB, indicating a stronger water suppression ability in the electrolyte. In cyclic voltammetry testing, the responsive interval was significantly extended to 1.4 V. However, due to the self-assembly effect between chains, resulting in a capacitance retention rate of only 76.0% under 10 A/g, and a decrease in long-term stability to 82.0%. Therefore, a networked polymer pCBAA-co-PEGDA was formed, which exhibited the highest conductivity of 5.8 mS/cm. The FHB ratio was as high as 81.6%, which confirmed that adding a small amount of cross-linking agent created space to effectively suppress self-assembly and maintained the characteristics of CBAA itself, such as good water-grabbing properties, enabling the electrochemical potential window to be maintained at 1.4 V and helping ions to move quickly in the network structure. The capacitance retention rate under high discharge current density could be maintained at 91.7%, and even after 5000 cycles of cycle life testing, it still contained 96.8% of the initial capacitance.
1 交通部中央氣象局. 全球暖化與氣候變遷, <https://www.cwb.gov.tw/V8/C/C/Change/change_1.html> (2013).
2 El-Kady, M. F., Strong, V., Dubin, S. & Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326-1330 (2012).
3 Pech, D. et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nature nanotechnology 5, 651-654 (2010).
4 Zheng, J. & Jow, T. High energy and high power density electrochemical capacitors. Journal of Power Sources 62, 155-159 (1996).
5 Chen, X., Paul, R. & Dai, L. Carbon-based supercapacitors for efficient energy storage. National Science Review 4, 453-489 (2017).
6 Thompson, M. W. Molecular Simulation of Ionic Liquids: Effects of Solvation, Humidification, and Confinement, Vanderbilt University, (2019).
7 Allen, M. J., Tung, V. C. & Kaner, R. B. Honeycomb carbon: a review of graphene. Chemical reviews 110, 132-145 (2010).
8 Eder, D. Carbon nanotube− inorganic hybrids. Chemical reviews 110, 1348-1385 (2010).
9 Fuertes, A. B. & Alvarez, S. Graphitic mesoporous carbons synthesised through mesostructured silica templates. Carbon 42, 3049-3055 (2004).
10 Li, D. & Kaner, R. B. Graphene-based materials. Science 320, 1170-1171 (2008).
11 Makarova, T. L. et al. Electrical properties of two-dimensional fullerene matrices. Carbon 39, 2203-2209 (2001).
12 Wang, Y. et al. Supercapacitor devices based on graphene materials. The Journal of Physical Chemistry C 113, 13103-13107 (2009).
13 Shi, Y., Peng, L., Ding, Y., Zhao, Y. & Yu, G. Nanostructured conductive polymers for advanced energy storage. Chemical Society Reviews 44, 6684-6696 (2015).
14 Trasatti, S. & Buzzanca, G. Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour. Journal of electroanalytical chemistry and interfacial electrochemistry 29, A1-A5 (1971).
15 Wang, T., Chen, H. C., Yu, F., Zhao, X. & Wang, H. Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Materials 16, 545-573 (2019).
16 Zhong, C. et al. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews 44, 7484-7539 (2015).
17 Wright, M. R. An introduction to aqueous electrolyte solutions. (John Wiley & Sons, 2007).
18 Khomenko, V., Raymundo-Piñero, E. & Béguin, F. High-energy density graphite/AC capacitor in organic electrolyte. Journal of Power Sources 177, 643-651 (2008).
19 Alipoori, S., Mazinani, S., Aboutalebi, S. H. & Sharif, F. Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges. journal of energy storage 27, 101072 (2020).
20 Feng, J. et al. Ion regulation of ionic liquid electrolytes for supercapacitors. Energy & Environmental Science 14, 2859-2882 (2021).
21 Jost, K., Dion, G. & Gogotsi, Y. Textile energy storage in perspective. Journal of Materials Chemistry A 2, 10776-10787 (2014).
22 Zhang, L. L. & Zhao, X. Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews 38, 2520-2531 (2009).
23 Mattson, J. S. & Mark, H. B. Activated carbon: surface chemistry and adsorption from solution. (M. Dekker, 1971).
24 Young, H. D., Freedman, R. A. & Ford, L. (Pearson education, 2007).
25 Brett, C. M., Brett, O. & Electrochemistry, A. Principles, methods, and applications. Electrochemistry 67, 444 (1993).
26 Bard, A. J. & Faulkner, L. R. Fundamentals and applications. Electrochemical methods 2, 580-632 (2001).
27 Conway, B. E. Electrochemical supercapacitors: scientific fundamentals and technological applications. (Springer Science & Business Media, 2013).
28 Othman, L., Chew, K. & Osman, Z. Impedance spectroscopy studies of poly (methyl methacrylate)-lithium salts polymer electrolyte systems. Ionics 13, 337-342 (2007).
29 Kumar, J. S., Subrahmanyam, A., Reddy, M. J. & Rao, U. S. Preparation and study of properties of polymer electrolyte system (PEO+ NaClO3). Materials Letters 60, 3346-3349 (2006).
30 Horn, N. R. A critical review of free volume and occupied volume calculation methods. Journal of Membrane Science 518, 289-294 (2016).
31 Ayawei, N., Ebelegi, A. N. & Wankasi, D. Modelling and interpretation of adsorption isotherms. Journal of chemistry 2017 (2017).
32 Donohue, M. D. & Aranovich, G. L. Classification of Gibbs adsorption isotherms. Advances in colloid and interface science 76, 137-152 (1998).
33 Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G. & Sing, K. S. Adsorption by powders and porous solids: principles, methodology and applications. (Academic press, 2013).
34 Sangwichien, C., Aranovich, G. & Donohue, M. Density functional theory predictions of adsorption isotherms with hysteresis loops. Colloids and Surfaces A: Physicochemical and Engineering Aspects 206, 313-320 (2002).
35 Donohue, M. & Aranovich, G. Adsorption hysteresis in porous solids. Journal of colloid and interface science 205, 121-130 (1998).
36 McMillan, W. & Teller, E. The Assumptions of the BET Theory. The Journal of Physical Chemistry 55, 17-20 (1951).
37 Ritzer, G. & Trice, H. M. An empirical study of Howard Becker's side-bet theory. Social forces, 475-478 (1969).
38 Engel, E. & Dreizler, R. M. Density functional theory. Theoretical and mathematical physics, 11-56 (2011).
39 Orio, M., Pantazis, D. A. & Neese, F. Density functional theory. Photosynthesis research 102, 443-453 (2009).
40 Landers, J., Gor, G. Y. & Neimark, A. V. Density functional theory methods for characterization of porous materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects 437, 3-32 (2013).
41 Ravikovitch, P. I. & Neimark, A. V. Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures. Langmuir 18, 1550-1560 (2002).
42 Jagiello, J., Kenvin, J., Olivier, J. P., Lupini, A. R. & Contescu, C. I. Using a new finite slit pore model for NLDFT analysis of carbon pore structure. Adsorption Science & Technology 29, 769-780 (2011).
43 Leamy, H. Charge collection scanning electron microscopy. Journal of Applied Physics 53, R51-R80 (1982).
44 Vernon-Parry, K. D. Scanning electron microscopy: an introduction. III-Vs Review 13, 40-44 (2000).
45 Seiler, H. Secondary electron emission in the scanning electron microscope. Journal of Applied Physics 54, R1-R18 (1983).
46 Robinson, V. Imaging with backscattered electrons in a scanning electron microscope. Scanning 3, 15-26 (1980).
47 Farrar, T. C. & Becker, E. D. Pulse and Fourier transform NMR: introduction to theory and methods. (Elsevier, 2012).
48 Kennepohl, D. D., Farmer, P. S. & Spinney, D. R. Theory of Nuclear Magnetic Resonance. (2020).
49 Abraham, R. J., Fisher, J. & Loftus, P. Introduction to NMR spectroscopy. Vol. 2 (Wiley New York, 1998).
50 Marion, D. An introduction to biological NMR spectroscopy. Molecular & Cellular Proteomics 12, 3006-3025 (2013).
51 Liu, J., Xiong, Z., Shen, M., Banyai, I. & Shi, X. Characterization of zwitterion-modified poly (amidoamine) dendrimers in aqueous solution via a thorough NMR investigation. The European Physical Journal E 43, 1-7 (2020).
52 Wang, L., Wang, Z., Ma, G., Lin, W. & Chen, S. Reducing the cytotoxity of poly (amidoamine) dendrimers by modification of a single layer of carboxybetaine. Langmuir 29, 8914-8921 (2013).
53 Blaszykowski, C., Sheikh, S. & Thompson, M. A survey of state-of-the-art surface chemistries to minimize fouling from human and animal biofluids. Biomaterials science 3, 1335-1370 (2015).
54 Wang, P.-H., Tseng, L.-H., Li, W.-C., Lin, C.-H. & Wen, T.-C. Zwitterionic polymer coupled with high concentrated electrolytes to achieve high ionic conductivity and wide electrochemical window for supreme specific energy aqueous supercapacitors. Journal of Energy Storage 42, 103060 (2021).
55 Wang, P.-H., Tseng, L.-H., Li, W.-C., Lin, C.-H. & Wen, T.-C. Zwitterionic semi-IPN electrolyte with high ionic conductivity and high modulus achieving flexible 2.4 V aqueous supercapacitors. Journal of the Taiwan Institute of Chemical Engineers 126, 58-66 (2021).
56 Xu, M. et al. Biomimetic mineralization of a hydroxyapatite crystal in the presence of a zwitterionic polymer. CrystEngComm 20, 2374-2383 (2018).
57 Peng, X. et al. A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nature communications 7, 11782 (2016).
58 Tseng, L.-H., Wang, P.-H., Li, W.-C., Lin, C.-H. & Wen, T.-C. Enhancing the ionic conductivity and mechanical properties of zwitterionic polymer electrolytes by betaine-functionalized graphene oxide for high-performance and flexible supercapacitors. Journal of Power Sources 516, 230624 (2021).
59 Bu, X., Su, L., Dou, Q., Lei, S. & Yan, X. A low-cost “water-in-salt” electrolyte for a 2.3 V high-rate carbon-based supercapacitor. Journal of Materials Chemistry A 7, 7541-7547 (2019).
60 Yamada, Y. et al. Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nature Energy 1, 1-9 (2016).