| 研究生: |
李翰承 Lee, Han-Cheng |
|---|---|
| 論文名稱: |
無線感測網路中支援差異式服務之階層式叢集架構傳輸協定 A Hierarchical-Cluster-Based Protocol for Supporting Differentiated Services in Wireless Sensor Networks |
| 指導教授: |
林輝堂
Lin, Hui-Tang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 無線感測網路 、差異式網路服務 、資訊傳輸服務品質 、傳輸延遲限制 |
| 外文關鍵詞: | Wireless Sensor Networks, Differentiated Networks Services, Quality of Service, Bounded Delay Transmission |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無線感測網路 (Wireless Sensor Networks,簡稱WSNs) 發展至今,無線感測節點 (Sensor Node) 已具備同時監控多元化環境資訊之能力。每項環境資訊因回報需求不同,各自具有可容忍之封包傳輸延遲 (Transmission Delay) 與遺失率 (Loss Rate) 等需求限制,因此無線感測網路必須提供差異式網路傳輸服務 (Differentiated Network Services) 以確保資訊傳輸服務品質 (Quality of Service,簡稱QoS)。本碩士論文將提出一套基於階層式叢集 (Hierarchical-Cluster-Based) 架構,名為HCB傳輸協定,透過具體的時間訊框 (Time Frame) 格式,並運用分散式權重計算與訊息交換方式,決定目前可使用傳輸時槽 (Timeslot) 傳輸資料之無線感測節點或叢集協調者 (Cluster Heads),以階層式叢集網路架構回報多元化環境資訊至資料匯集點 (Sink)。而每項環境資訊依據緊急程度與資訊傳輸服務品質限制分配傳輸時槽數,以達成差異式傳輸服務之目的。實驗結果證明本論文之傳輸協定以階層式網路架構為基礎,使得環境資訊的回報不易受到距離影響而增加傳輸延遲時間,同時亦可確保每項環境資訊傳輸皆可滿足其可容忍之傳輸延遲與封包遺失率限制內,進而滿足差異式服務品質之需求。
A Wireless Sensor Network (WSN) can be employed as an efficient and powerful tool to support various delay-sensitive applications for timely monitoring of environmental information subjected to emergency situations. Since this class of applications may pose strict Quality of Service (QoS) requirements (packet delay and loss rate) divided into various priority levels, the WSN has to provide differentiated traffic services to satisfy the diverse requirements. This thesis proposes a hierarchical-cluster-based (HCB) protocol using a specific time framing structure with a weighted-based medium access scheduling method to shorten average packet delay and prevent data collisions. In HCB, timeslots are proportionally assigned to the traffic in accordance with the priority level to differentiate between different types of traffic. The numerical results show packets of different sources within a cluster are sent to the sink within the bounded delay and delay bounds are proportional to the priority levels as well as confirm the effectiveness and robustness of the HCB for satisfying QoS requirements in WSNs.
[1] I. F. Akyildiz and I. H. Kasimoglu, “Wireless Sensor and Actor Networks: Research Challenges,” Ad Hoc Networks Journal, vol. 2, no. 4, pp. 351-367, Oct. 2004.
[2] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, J. Anderson, “Wireless sensor networks for habitat monitoring,” in Proc. of the 1st ACM International Workshop on Wireless sensor networks and applications, pp. 88–97, 2002.
[3] H-Y. Luo, F. Ye, J. Cheng, S-W. Lu, L-X. Zhang, “TTDD: A Two-tier Data Dissemination Model for Large-scale Wireless Sensor Networks,” Wireless Networks, vol. 11, pp. 161-175, Jan. 2005.
[4] J-H. Shin, J. Kim, K. Park, D. Park, “Railroad: A Virtual Infrastructure for Data Dissemination in Wireless Sensor Networks,” in Proc. of the 2nd ACM international workshop on Performance evaluation of wireless ad hoc, sensor, and ubiquitous networks, pp. 168-174,Oct. 2005.
[5] M. Balakrishnan, D. Benhaddou, X.-J. Yuan and D. Gurkan, “Service Preemptions for Guaranteed Emergency Medium Access in Wireless Sensor Networks,” in Proc. of IEEE MILCOM, pp.16-19, Nov. 2008.
[6] IEEE 802.11e Standards, MAC Quality of Service Enhancements, 2005, http://standards.ieee.org/getieee802/download/802.11e-2005.pdf
[7] M. Jafarian and M. Jaseemuddin, “Routing of Emergency Data in a Wireless Sensor Network for Mines,” in Proc. of IEEE ICC, pp. 2813-2819,May 2008.
[8] A. Boukerche, R. B. Araujo, L. Villans, “A Novel QoS Based Routing Protocol for Wireless Actor and Sensor Networks,” in Proc. of IEEE GLOBECOM, pp. 4931-4935, Nov. 2007.
[9] Akyildiz, I.F., and Kasimoglu, I. H., “Wireless Sensor and Actor Networks: Research Challenges,” Ad Hoc Networks Journal, vol.2, pp. 351-367, Oct. 2004.
[10] N.Torabi, M.R. Hashemi, “Bounded Delay Transmission of Different Traffic Classes in Wireless Sensor Networks,” in Proc. of IEEE WCNC, April 2009.
[11] V. Rajendran, J. J. Garcia-Luna-Aceves, K. Obracka., “Energy-Efficient, Application-Aware Medium Access for Sensor Networks,” IEEE International Conference on Mobile Adhoc and Sensor Systems Conference, p.630, 2005.
[12] L. Bao. and J. J. Garcia-Luna-Aceves, “A New Approach to Channel Access Scheduling for Ad Hoc Networks,” The Seventh Annual International Conference on Mobile Computing and Networking, pp.210-221, 2001.
[13] C.-F. Jiang, D.-M. Yuan, Y.-H. Zhao, “Towards Clustering Algorithms in Wireless Sensor Networks-A Survey, ” in Proc. of IEEE WCNC, April 2009.
[14] O. Younis, M. Krunz, and S. Ramasubramanian, “Node Clustering in Wireless Sensor Networks: Recent Developments and Deployment Challenges, ” in Proc. of IEEE Network, pp20-25, May 2006.
[15] A. A. Abbasi, M. Younis, “A Survey on Clustering Algorithms for Wireless Sensor Networks, ” Computer Communications, vol 30, pp.2826-2841, Oct. 2007.
[16] F. Kuhn, T. Moscibroda, and R. Wattenofer, “Initializing Newly Deployed Ad Hoc and Sensor Networks,” in Proc. ACM MOBICOM, pp. 260-74, Sept. 2004.
[17] D. J. Baker and A. Ephremides, “The Architectural Organization of a Mobile Radio Network via a Distributed Algorithm,” IEEE Trans. Commun., vol. 29, no.11, pp. 1694-701, 1981.
[18] O. Younis and S. Fahmy, “Distributed Clustering in Ad Hoc Sensor Networks: A Hybrid, Energy-Efficient Approach,” in Proc. IEEE INFOCOM, Hong Kong, Mar. 2004.
[19] H. Chan and A. Perrig, “ACE: An Emergent Algorithm for Highly Uniform Cluster Formation,” in Proc. 1st Euro. Wksp. Sensor Networks, pp.154-71, Jan. 2004.
[20] P. Ding, J. Holliday, A. Celik, “Distributed Energy Efficient Hierarchical Clustering for Wireless Sensor Networks,” in Proc. of IEEE DCOSS, June 2005.
[21] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An application-specific protocol architecture for wireless microsensor networks, ”IEEE Transactions on wireless communications, vol. 1, pp. 660-669, Oct. 2002.
[22] S. J. Golestani., “A Stop-and-Go Queueing Framework for Congestion Management,” in Proc. ACM SigComm 1990,pp.8-18, Sept. 1990.
[23] Qualnet simulator –http://www.qualnet.com
[24] Q.-H. Wang, T.-T. Zhang, “Source Traffic Modeling in Wireless Sensor Networks for Target Tracking,” in Proc. of PE-WASUN, 2008.
[25] A. Epheremides, J. E. Wieselthier and D. J. Baker, “A Design Concept for Reliable Mobile Radio Networks with Frequency Hopping Signaling,” in Proc. of IEEE, vol 75, no1, pp. 56-73.
[26] A. Youssef, M. Younis, M. Youssef, A. Agrawala, “Distributed Formation of Overlapping Multi-hop Clusters in Wireless Sensor Networks,” in Proc. of the 49th Annual IEEE Globecom, San Francisco, CA, Nov. 2006.
[27] S. Bandyopadhyay, E. Coyle, “An Energy Efficient Hierarchical Clustering Algorithm for Wireless Sensor Networks,” in Proc. of IEEE INFOCOM, San Francisco, California, April 2003.
[28] P. Kumarawadu, D. J. Dechene, M. Luccini, and A. Sauer, “Algorithm for Node Clustering in Wireless Sensor Networks: A Survey,” in Proc. of IEEE ICIAFS, pp. 295-300, Dec. 2008.
[29] A. D. Amis, R. Prakash, T.H.P. Vuong, D.T. Huynh, “Max-Min D-cluster Formation in Wireless Ad Hoc Networks,” in Proc. of IEEE INFOCOM, March 2000.
[30] MICA Series Home http://www.xbow.com
[31] XSM Series Home http://cast.cse.ohio-state.edu/exscal
[32] MICA2 Data Sheet https://www.eol.ucar.edu/rtf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf
校內:2016-09-02公開