| 研究生: |
林俊竹 Lin, Chun-Chu |
|---|---|
| 論文名稱: |
探討旋轉塗佈擴散源製程及表面結構對於矽基太陽能電池效率的影響 Investigation of effect of spin on dopant process and surface texturing on efficiency of silicon solar cells |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 矽基太陽能電池 、旋塗擴散源 、表面結構 、反應離子蝕刻 |
| 外文關鍵詞: | silicon based solar cell, spin on dopant, black silicon and reactive ion etching |
| 相關次數: | 點閱:61 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
矽基太陽能電池為目前主要商業化太陽能電池,為了探討製程變數對於矽基太陽能電池效率的影響,本研究首先針對擴散摻雜的製程進行最佳化,所得到最佳化擴散製程條件為850℃下持溫50分鐘,而其平均光電轉換效率為9.58%,最高效率可達11.09%。固定摻雜製程後,我們就旋塗擴散源及表面結構對於太陽能電池效率的影響作探討。在擴散源方面,擴散源A比起B、C、D具有較高的平均光電轉換效率,最高光電轉換效率達11.09%;在表面結構方面,使用反應離子蝕刻製備出黑矽太陽能電池,平均表面反射比於波長200~1000nm之間可低於2%,黑矽結構搭配擴散源A的平均光電轉換效率為6.61%,最高效率可達10.01%。
The silicon based solar cell is currently the primary commercial product in solar cell market. In order to investigate the effect of processing variables on the efficiency of silicon solar cells, we first optimized the doping process. The optimal doping condition is to maintain at 850℃ for 50 minutes.The average photo-electron conversion efficiency obtained is 9.58%, with the maximum efficiency up to 11.09%. Under this doping condition, the effect of the diffusion source and the surface texturing were studied.The higher average photo-electron conversion efficiency was achieved when use the diffusion source A with the maximum efficiency 11.09%. As to the surface texturing, the black silicon generated by reactive ion etching provides great absorbance of the sun light and the average surface reflectance is less than 2%. The photo-electron conversion efficiency is 6.61% with the highest efficiency up to 10% when using the diffusion A.
[1] http://www.nrel.gov/
[2] D. Bouhafs, A. Moussi, M. Boumaour, S. E. K. Abaidia, and L. Mahiou, "N+ silicon solar cells emitters realized using phosphoric acid as doping source in a spray process," Thin Solid Films, vol. 510, pp. 325-328, Jul 2006.
[3] J. F. Nijs, J. Szlufcik, J. Poortmans, S. Sivoththaman, and R. P. Mertens, "Advanced manufacturing concepts for crystalline silicon solar cells," Ieee Transactions on Electron Devices, vol. 46, pp. 1948-1969, Oct 1999.
[4] J. Zhao, A. Wang, M. A. Green, and Ieee, "24-PERCENT EFFICIENT PERL STRUCTURE SILICON SOLAR-CELLS," Conference Record of the Twenty First Ieee Photovoltaic Specialists Conference - 1990, Vols 1 and 2, pp. 333-335, 1990.
[5] J. Zhao, A. H. Wang, and M. A. Green, "24.5% efficiency PERT silicon solar cells on SEH MCZ substrates and cell performance on other SEH CZ and FZ substrates," Solar Energy Materials and Solar Cells, vol. 66, pp. 27-36, Feb 2001.
[6] J. H. Zhao, A. H. Wang, and M. A. Green, "High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates," Solar Energy Materials and Solar Cells, vol. 65, pp. 429-435, Jan 2001.
[7] O. Schultz, S. W. Glunz, and G. P. Willeke, "Multicrystalline silicon solar cells exceeding 20% efficiency," Progress in Photovoltaics, vol. 12, pp. 553-558, Nov 2004.
[8] H. F. Sterling and R. C. G. Swann, "CHEMICAL VAPOUR DEPOSITION PROMOTED BY RF DISCHARGE," Solid-State Electronics, vol. 8, pp. 653-&, 1965.
[9] W. E. Spear, P. G. Le Comber, S. Kinmond, and M. H. Brodsky, "Amorphous silicon pn junction," Applied Physics Letters, vol. 28, pp. 105-107, 1976.
[10] A. Triska, D. Dennison, and H. Fritzsche, "HYDROGEN CONTENT IN AMORPHOUS-GE AND SI PREPARED BY RF DECOMPOSITION OF GEH4 AND SIH4," Bulletin of the American Physical Society, vol. 20, pp. 392-392, 1975.
[11] O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, et al., "Intrinsic microcrystalline silicon: A new material for photovoltaics," Solar Energy Materials and Solar Cells, vol. 62, pp. 97-108, 4/15/ 2000.
[12] T. Sawada, N. Terada, S. Tsuge, T. Baba, T. Takahama, K. Wakisaka, et al., "High-efficiency a-Si/c-Si heterojunction solar cell," in Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference - 1994, 1994 IEEE First World Conference on, 1994, pp. 1219-1226 vol.2.
[13] http://us.sanyo.com/Solar/SANYO-HIT-Technology
[14] R. Schindler, I. Reis, B. Wagner, A. Eyer, H. Lautenschlager, C. Schetter, et al., "Rapid optical thermal processing of silicon solar cells," in Photovoltaic Specialists Conference, 1993., Conference Record of the Twenty Third IEEE, 1993, pp. 162-166.
[15] D. S. Kim, M. M. Hilali, A. Rohatgi, K. Nakano, A. Hariharan, and K. Matthei, "Development of a phosphorus spray diffusion system for low-cost silicon solar cells," Journal of the Electrochemical Society, vol. 153, pp. A1391-A1396, 2006.
[16] Z. X. Liu, H. Takato, C. Togashi, and I. Sakata, "Oxygen-atmosphere heat treatment in spin-on doping process for improving the performance of crystalline silicon solar cells," Applied Physics Letters, vol. 96, Apr 2010.
[17] T. Y. Kwon, D. H. Yang, M. K. Ju, W. W. Jung, S. Y. Kim, Y. W. Lee, et al., "Screen printed phosphorus diffusion for low-cost and simplified industrial mono-crystalline silicon solar cells," Solar Energy Materials and Solar Cells, vol. 95, pp. 14-17, Jan 2011.
[18] S. Sivoththaman, W. Laureys, J. Nijs, and R. Mertens, "FABRICATION OF LARGE-AREA SILICON SOLAR-CELLS BY RAPID THERMAL-PROCESSING," Applied Physics Letters, vol. 67, pp. 2335-2337, Oct 1995.
[19] R. M. Almeida, H. C. Vasconcelos, M. C. Goncalves, and L. F. Santos, "XPS and NEXAFS studies of rare-earth doped amorphous sol-gel films," Journal of Non-Crystalline Solids, vol. 232, pp. 65-71, Jul 1998.
[20] M. Aparicio and L. C. Klein, "Sol-gel synthesis and characterization of SiO2-P2O5-ZrO2," Journal of Sol-Gel Science and Technology, vol. 28, pp. 199-204, Sep 2003.
[21] M. Aparicio, F. Damay, and L. C. Klein, "Characterization of SiO2-P2O5-ZrO2 Sol-Gel/NAFION™ Composite Membranes," Journal of Sol-Gel Science and Technology, vol. 26, pp. 1055-1059, 2003/01/01 2003.
[22] M. Anastasescu, M. Gartner, A. Ghita, L. Predoana, L. Todan, M. Zaharescu, et al., "Loss of phosphorous in silica-phosphate sol-gel films," Journal of Sol-Gel Science and Technology, vol. 40, pp. 325-333, Dec 2006.
[23] Y. J. Tang, G. B. Wang, Z. J. Hu, X. M. Qin, G. P. Du, and W. Z. Shi, "Preparation of n(+) emitter on p-type silicon wafer using the spin-on doping method," Materials Science in Semiconductor Processing, vol. 15, pp. 359-363, Aug 2012.
[24] T. S. Petrovskaya, L. P. Borilo, V. V. Kozik, and V. I. Vereshchagin, "Structure and properties of nanoproducts of the system P2O5-SiO2," Glass and Ceramics, vol. 65, pp. 410-414, Nov 2008.
[25] K. M. Mar, "PHOSPHORUS DIFFUSION IN SILICON FROM A SPIN-ON P-DOPED SILICON-OXIDE FILM," Journal of the Electrochemical Society, vol. 126, pp. 1252-1257, 1979.
[26] M. L. Barry, "DOPED OXIDES AS DIFFUSION SOURCES .2. PHOSPHORUS INTO SILICON," Journal of the Electrochemical Society, vol. 117, pp. 1405-&, 1970.
[27] Ghoshtag.Rn, "MODEL OF DOPED-OXIDE-SOURCE DIFFUSION IN SILICON," Solid-State Electronics, vol. 17, pp. 1065-1073, 1974.
[28] A. Bentzen, G. Schubert, J. S. Christensen, B. G. Svensson, and A. Holt, "Influence of temperature during phosphorus emitter diffusion from a spray-on source in multicrystalline silicon solar cell processing," Progress in Photovoltaics, vol. 15, pp. 281-289, Jun 2007.
[29] A. Bentzen, A. Holt, J. S. Christensen, and B. G. Svensson, "High concentration in-diffusion of phosphorus in Si from a spray-on source," Journal of Applied Physics, vol. 99, Mar 2006.
[30] A. Kanamori and M. Kanamori, "COMPARISON OF 2 KINDS OF OXYGEN DONORS IN SILICON BY RESISTIVITY MEASUREMENTS," Journal of Applied Physics, vol. 50, pp. 8095-8101, 1979.
[31] S. Kishino, Y. Matsushita, M. Kanamori, and T. Iizuka, "THERMALLY INDUCED MICRODEFECTS IN CZOCHRALSKI-GROWN SILICON - NUCLEATION AND GROWTH-BEHAVIOR," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 21, pp. 1-12, 1982.
[32] M. Ogino, "SUPPRESSION EFFECT UPON OXYGEN PRECIPITATION IN SILICON BY CARBON FOR A 2-STEP THERMAL ANNEAL," Applied Physics Letters, vol. 41, pp. 847-849, 1982.
[33] S. Sivoththaman, W. Laureys, J. Nijs, and R. Mertens, "Rapid thermal annealing of spin-coated phosphoric acid films for shallow junction formation," Applied Physics Letters, vol. 71, pp. 392-394, Jul 1997.
[34] D. Bouhafs, A. Moussi, M. Boumaour, S. E. K. Abaidia, L. Mahiou, and A. Messaoud, "Influence of the organic solvents on the properties of the phosphoric acid dopant emulsion deposited on multicrystalline silicon wafers," Journal of Physics D-Applied Physics, vol. 40, pp. 2728-2731, May 2007.
[35] P. Doshi and A. Rohatgi, "18% efficient silicon photovoltaic devices by rapid thermal diffusion and oxidation," Ieee Transactions on Electron Devices, vol. 45, pp. 1710-1716, Aug 1998.
[36] S. Solmi, A. Parisini, R. Angelucci, A. Armigliato, D. Nobili, and L. Moro, "Dopant and carrier concentration in Si in equilibrium with monoclinic SiP precipitates," Physical Review B, vol. 53, pp. 7836-7841, Mar 1996.
[37] A. Armigliato, D. Nobili, M. Servidori, and S. Solmi, "SIP PRECIPITATION WITHIN DOPED SILICON LATTICE, CONCOMITANT WITH PHOSPHORUS PREDEPOSITION," Journal of Applied Physics, vol. 47, pp. 5489-5491, 1976.
[38] A. Armigliato, D. Nobili, S. Solmi, G. Blendin, B. Schum, A. Lachowicz, et al., "Characterization of the PSG/Si interface of H3PO4 doping process for solar cells," Solar Energy Materials and Solar Cells, vol. 95, pp. 3099-3105, Nov 2011.
[39] R. B. Stephens and G. D. Cody, "OPTICAL REFLECTANCE AND TRANSMISSION OF A TEXTURED SURFACE," Thin Solid Films, vol. 45, pp. 19-29, 1977.
[40] S. Koynov, M. S. Brandt, and M. Stutzmann, "Black nonreflecting silicon surfaces for solar cells," Applied Physics Letters, vol. 88, May 2006.
[41] H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, "Nanostructured black silicon and the optical reflectance of graded-density surfaces," Applied Physics Letters, vol. 94, Jun 2009.
[42] H. M. Branz, C. W. Teplin, M. J. Romero, I. T. Martin, Q. Wang, K. Alberi, et al., "Hot-wire chemical vapor deposition of epitaxial film crystal silicon for photovoltaics," Thin Solid Films, vol. 519, pp. 4545-4550, May 2011.
[43] J. M. Weisse, D. R. Kim, C. H. Lee, and X. L. Zheng, "Vertical Transfer of Uniform Silicon Nanowire Arrays via Crack Formation," Nano Letters, vol. 11, pp. 1300-1305, Mar 2011.
[44] B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, et al., "Coaxial silicon nanowires as solar cells and nanoelectronic power sources," Nature, vol. 449, pp. 885-U8, Oct 2007.
[45] S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, et al., "Energy-Conversion Properties of Vapor-Liquid-Solid-Grown Silicon Wire-Array Photocathodes," Science, vol. 327, pp. 185-187, Jan 2010.
[46] E. C. Garnett and P. D. Yang, "Silicon nanowire radial p-n junction solar cells," Journal of the American Chemical Society, vol. 130, pp. 9224-+, Jul 2008.
[47] H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, "Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules," Applied Physics Letters, vol. 95, Sep 2009.
[48] K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu, "Aligned single-crystalline Si nanowire arrays for photovoltaic applications," Small, vol. 1, pp. 1062-1067, Nov 2005.
[49] E. Garnett and P. D. Yang, "Light Trapping in Silicon Nanowire Solar Cells," Nano Letters, vol. 10, pp. 1082-1087, Mar 2010.
[50] H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, et al., "Wide-angle antireflection effect of subwavelength structures for solar cells," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 46, pp. 3333-3336, Jun 2007.
[51] J. Yoo, G. Yu, and J. Yi, "Black surface structures for crystalline silicon solar cells," Materials Science and Engineering B-Advanced Functional Solid-State Materials, vol. 159-60, pp. 333-337, Mar 2009.
[52] T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, "Microstructuring of silicon with femtosecond laser pulses," Applied Physics Letters, vol. 73, pp. 1673-1675, Sep 1998.
[53] E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, "Nanowire Solar Cells," in Annual Review of Materials Research, Vol 41. vol. 41, D. R. Clarke and P. Fratzl, Eds., ed Palo Alto: Annual Reviews, 2011, pp. 269-295.
[54] B. M. Kayes, H. A. Atwater, and N. S. Lewis, "Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells," Journal of Applied Physics, vol. 97, Jun 2005.
[55] F. Toor, H. M. Branz, M. R. Page, K. M. Jones, and H. C. Yuan, "Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells," Applied Physics Letters, vol. 99, Sep 2011.
[56] J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, et al., "Black silicon layer formation for application in solar cells," Solar Energy Materials and Solar Cells, vol. 90, pp. 3085-3093, Nov 2006.
[57] J. Yoo, G. Yu, and J. Yi, "Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE)," Solar Energy Materials and Solar Cells, vol. 95, pp. 2-6, Jan 2011.
[58] J. Oh, H. C. Yuan, and H. M. Branz, "An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures," Nature Nanotechnology, vol. 7, pp. 743-748, Nov 2012.
[59] I. Vasiliu, M. Gartner, M. Anastasescu, L. Todan, L. Predoana, M. Elisa, et al., "Structural and optical properties of the SiO2-P2O5 films obtained by sol-gel method," Thin Solid Films, vol. 515, pp. 6601-6605, Jun 2007.
[60] D.-H. Neuhaus and A. nzer, "Industrial Silicon Wafer Solar Cells," Advances in OptoElectronics, 2007.
[61] 財團法人國家實驗研究院國家奈米元件實驗室,"太陽能電池材料及製程技術,"2012.
[62] 翁敏航,"太陽能電池元件-原理元件材料檢測技術,"2009.
校內:2018-07-04公開