簡易檢索 / 詳目顯示

研究生: 羅宗男
Lo, Tsung-Nan
論文名稱: 電漿熔射PSZ介層對牙科瓷與純鈦介面強度之效應研究
The Investigations on the Effects of Plasma-Sprayed PSZ Bond Coat to the Interfacial Strength between Dental Porcelain and Pure Titanium
指導教授: 呂傳盛
Lui, Truan-Sheng
張煥修
Chang, Edward
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 138
中文關鍵詞: 純鈦牙科瓷介層介面分析破裂特性黏著強度
外文關鍵詞: bond coat, titanium, porcelain, adherence strength, fracture, interface analysis
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   牙科瓷與純鈦已被廣泛結合為金屬-陶瓷復形體之應用,實際之應用仍有諸多問題待解,如純鈦於燒製過程易氧化導致介面弱化為一不可避免之關鍵問題,而牙科瓷與純鈦介面之劣化機制亦未釐清,本研究針將對這些問題加以探討。為了增進黏著強度,本論文嘗試引入一電漿熔射PSZ (部分安定化氧化鋯)介層以作改善,並探討此介層引入之效應。
      在無PSZ介層下,牙科瓷與純鈦介面間經高溫燒製會生成氧化鈦,此氧化鈦生成物於後續燒製過程有溶入牙科瓷結構之現象。此外,介面處之牙科瓷中有純Sn與純Si之析出,顯示活性較高之鈦原子會擴散至牙科瓷中,與其組成之SnO2與SiO2產生氧化還原反應,導致鈦本身因而氧化並間接促使介面處之氧化鈦成長。以上結果印證牙科瓷與純鈦介面產生化學黏著。
      隨著燒製時間增加,介面之氧化鈦厚度與牙科瓷內之孔洞量亦增加,介面之黏著強度與牙科瓷之內聚強度則下降。試片破裂模式為內聚與介面破壞之混合型,且隨燒製時間增加,破裂起始有從牙科瓷轉移為介面破壞之傾向,且介面破壞面積亦隨之增加,說明介面強度不佳為整個結構之弱點。此外,其介面破壞面經分析後發現破壞發生之位置主要位於氧化鈦與純鈦基材介面處,甚至是少量基材鈦表層。
      為釐清無介層牙科瓷與純鈦間破裂之基本要因,論文亦探討殘留應力效應、破裂表面組成以及微結構變化。結果顯示牙科瓷經不同時間燒製後,其有效楊氏係數值因而改變,燒製後牙科瓷亦導入殘留壓縮應力。另外,基材端破斷面顯示具有高濃度之氧。由橫截面觀察氧化鈦與鈦基材介面發現類似多孔之結構,其介面破壞之破裂面亦顯示牙科瓷端有純鈦存在,基材端則未發現氧化鈦,顯示實際破裂位置位於氧化鈦與鈦基材介面處,並有少量之鈦破裂。牙科瓷與純鈦之介面劣化主要是介面處因氧化鈦形成留下缺陷,經由壓縮應力作用使牙科瓷與純鈦間產生燒製裂紋。另外,基材表層鈦固溶氧導致純鈦表層強度劣化,導致有少量鈦發生破壞。以上為無介層試片介面強度不足並導致黏著強度下降之要因。
      為提高牙科瓷與純鈦之介面強度,引入PSZ介層阻止上述介面劣化之要因為一合理之考量。根據黏著強度測試及破裂面分析結果顯示,PSZ介層存在大幅提升黏著強度,且隨燒製時間增加,發生介面破壞則有減緩之現象。由橫截面觀察與介面破壞表面分析結果亦顯示破裂位置未曾發生於PSZ介層中,甚至是PSZ與純鈦之介面。此外,在PSZ與鈦基材介面並未發現氧化鈦的生成,顯示PSZ介層可有效阻礙鈦基材與空氣及牙科瓷層中之氧接觸。以上結果顯示PSZ介層於燒製後不僅可保有其本體強度而不破裂,且與鈦基材亦黏著良好,牙科瓷與鈦介面產生強化作用,其黏著強度因此而大幅提升。

     Dental porcelains and pure titanium are widely employed as metal-ceramic restorations. However, the critical obstructions in the practical applications still have to be overcome, including high temperature oxidation of Ti and interfacial fracture mechanism between porcelain and Ti. Objectives of this study are to clarify the problems mentioned above. Furthermore, we attempt to introduce a plasma-sprayed PSZ (partially stabilized zirconia) bond coating to improve the adherence strength between porcelain and Ti. Effects of the introduced PSZ bond coating will be investigated as well.
     The TiO2 formed at the interface between porcelain and Ti during high temperature firing without introducing the PSZ bond coating. In addition, the TiO2 tends to dissolve into the porcelain during the post firing procedure. Meanwhile, the pure Sn and Si precipitate in the porcelain near the interface, indicating that the active Ti atoms diffuse into the porcelain and react with the compositional SnO2 and SiO2. The redox reaction causes the oxidation of Ti and consequently results in the growth of TiO2. These results prove that the porcelain adheres chemically to Ti.
     With the increased firing time, the TiO2 thickness and pores content of porcelain increase as well. However, the adherence strength and the cohesive strength of porcelain decrease concurrently. The fracture surfaces of specimens for 4-point bending test reveal a combination of adhesive and cohesive failure. Furthermore, the fracture initiation tends to occur from porcelain to interface with increasing firing time. The area of adhesive failure increases as well. The results depict that the weak interfacial strength results in the dysplasia of the structure. The fracture site on the surface of adhesive failure occurs at the interface between TiO2 and Ti, slightly inside the Ti surface.
     In order to clarify the decisive factors that predominate the fracture occurrence between porcelain and Ti without a bond coating, the effects of residual stress, composition of fractured surface and variations of microstructures are investigated as well. The results indicate that the effective Young’s modulus of porcelain varies with increasing firing time, and the residually compressive stress was formed in the porcelain after firing. The fractured surface contains a high quantity of oxygen. The results of cross-sectional observations indicate that the interface between TiO2 and Ti has the porous-like defects. In addition, the results of the fractured surface on porcelain side reveal the Ti spectra, but not in the substrate side. From the results presented above, it indicates that the fractured site occurs at the interfacial defects between TiO2 and Ti, slightly inside the Ti surface. The degeneration of interfacial strength between porcelain and Ti mainly resulted from the combined actions: the defects accomplished with TiO2 formation and firing crack caused by residual stress. Moreover, the solid-solution oxygen in the surface of Ti substrate causes the degeneration of Ti and results in the fracture of Ti.
     It is an appropriate consideration to introduce the PSZ bond coating to avoid the degeneration of interfacial strength between porcelain and Ti. The results of the adherence strength measurement and fracture surface analysis indicate that the adherence strength increases markedly with a PSZ bond coating. In addition, the occurrence of fracture at the interface decreases instead with increasing firing time. The results of cross-sectional observations and adhesive failure surface analysis also reveal that fracture doesn’t occur inside the PSZ, even at the PSZ/Ti interface. Furthermore, the TiO2 does not form at the PSZ/Ti interface, revealing that the PSZ bond coating serves as a barrier against the diffusion of oxygen from environment and porcelain. The PSZ bond coating maintains a status of high strength itself and adheres to Ti firmly after firing. The interface is strengthened with the highly increased adherence strength.

    中文摘要.......................................................A1 英文摘要.......................................................A3 目錄...........................................................B1 表目錄.........................................................B5 圖目錄.........................................................B6 第一章 緒論.................................................1 1-1 前言........................................................1 1-2 研究重點及目的..............................................5 1-2-1 牙科瓷與純鈦之介面特性問題................................5 1-2-2 電漿熔射PSZ介層對牙科瓷/純鈦介面之效應探討................6 第二章 文獻回顧.............................................8 2-1 牙科瓷......................................................8 2-1-1 牙科瓷之基本性質..........................................8 2-1-2 牙科瓷之分類與特性........................................9 2-2 金屬薄冠蓋發展進程.........................................10 2-3 鈦金屬之氧化行為...........................................12 2-3-1 純鈦金屬之基本性質.......................................13 2-3-2 鈦之氧化特性.............................................13 2-4 金屬-陶瓷復形體............................................15 2-4-1 金屬-陶瓷復形體之製作....................................15 2-4-2 金屬-陶瓷復形體之接合問題................................17 2-4-3 純鈦之氧化對鈦-瓷復形體介面之效應........................18 2-5 牙科瓷層燒成後之殘留應力...................................20 2-5-1 殘留應力之形成效應.......................................20 2-5-2 殘留應力之量測...........................................22 2-5-3 牙科瓷之楊氏係數.........................................24 2-6 電漿熔射PSZ介層............................................24 第三章 實驗方法與步驟......................................39 3-1 牙科瓷與純鈦接合介面特性探討...............................39 3-1-1 試片製作.................................................39 3-1-2 微結構觀察與瓷層燒製前後特性分析.........................41 3-1-3 介面分析.................................................41 3-1-4 黏著強度與牙科瓷層內聚強度量測...........................42 3-1-5 結構特性與破裂模式分析...................................43 3-1-6 牙科瓷層楊氏係數量測.....................................44 3-1-7 牙科瓷層殘留應力之量測...................................45 3-1-8 破斷面微觀與化學分析.....................................45 3-2 引入PSZ介層於牙科瓷/純鈦介面之效應探討.....................45 3-2-1 試片製作.................................................46 3-2-2 PSZ陶瓷層引入效應之特性評估..............................46 3-2-3 黏著強度量測與破斷面分析.................................46 3-2-4 PSZ介層對氧擴散之影響....................................47 第四章 實驗結果............................................55 4-1牙科瓷與純鈦接合介面特性....................................55 4-1-1 牙科瓷與純鈦介面之微結構分析結果.........................55 4-1-1-1 牙科瓷本體與介面處牙科瓷特性評估.......................55 4-1-1-2 介面分析...............................................56 4-1-2 牙科瓷與純鈦之黏著強度與破裂特性.........................59 4-1-2-1 黏著強度與牙科瓷內聚強度量測結果.......................59 4-1-2-2 結構特性變化...........................................60 4-1-2-3 破裂特性分析...........................................61 4-1-3 牙科瓷層之殘留應力量測與破裂面分析.......................63 4-1-3-1 牙科瓷層楊氏係數.......................................63 4-1-3-2 牙科瓷層殘留應力.......................................64 4-1-3-3 破斷面微觀與化學分析之結果.............................64 4-2 引入PSZ介層於牙科瓷/純鈦介面之效應.........................67 4-2-1 PSZ陶瓷層特性評估........................................67 4-2-2 黏著強度量測與巨觀之破斷面分析...........................68 4-2-3 破斷表面之微結構分析.....................................70 4-2-4 PSZ與鈦基材介面微結構分析之結果..........................72 第五章 介面特性與強化效應之釐清...........................105 5-1 介面微結構與相組成變化效應................................105 5-2 結構與黏著強度變化間之關係................................108 5-3 破裂機制變化之PSZ層效應...................................111 5-4 破裂機制之形成說明........................................115 第六章 結論...............................................126 參考文獻......................................................128

    1. G. J. Christensen: J. Prosth. Dent. 56 (1986) 1-8.
    2. K. J. Anusavice: “Dental ceramics”, Phillips’ Science of Dental
    Materials/10th edition, 1996, pp. 583-618.
    3. B. W. King, H. P. Tripp and W. H. Duckworth: J. Am. Ceram. Soc. 42 (1959)
    504-525.
    4. J. W. Mclean and I. R. Sced: Aust. Dent. J. 21 (1976) 119-127.
    5. W. C. Wagner: Diss. Abstr. Int. 51 (1990) 2016-B.
    6. W. C. Wagner, K. Asgar, W. C. Bigelow and R. A. Flinn: J. Biomed. Mat. Res. 27
    (1993) 531-537.
    7. S. Amada and H. Yamada: Surf. Coat. Technol. 78 (1996) 50-55.
    8. T. M. Hofstede, C. Ercoli, G. N. Graser, R. H. Tallents, M. E. Moss and D. T.
    Zero: J. Prosth. Dent. 84 (2000) 309-317.
    9. H. Kimura, C. J. Horng, M. Okazaki and J. Takahashi: Dent. Mat. J. 9 (1990)
    91-99.
    10. M. Könönen and J. Kivilahti: J. Biomed. Mat. Res. 28 (1994) 1027-1035.
    11. P. V. Landuyt, J. M. Streydio, F. Delannay and E. Munting: J. Mat. Sci. 33
    (1998) 4991-4999.
    12. A. E. Jenkins: J. Inst. Met. 82 (1953-54) 213-221.
    13. F. Motte, C. Coddet, P. Sarrazin, M. Azzopardi and J. Besson: Oxid. Met. 10
    (1976) 113-126.
    14. J. E. Lopes Gomes and A. M. Huntz: Oxid. Met. 14 (1980) 249-261.
    15. G. Bertrand, K. Jarraya and J. M. Chaix: Oxid. Met. 21 (1983) 1-19.
    16. C. Coddet, A. M. Chaze and G. Beranger: J. Mat. Sci. 22 (1987) 2969-2974.
    17. V. I. Dyachkov: Russ. J. Appl. Chem. 67 (1994) 309-315.
    18. H. L. Du, P. K. Datta, D. B. Lewis and J. S. Burnell-Gray: Oxid. Met. 45
    (1996) 507-527.
    19. K. J. Anusavice, J. A. Horner and C. W. Fairhurst: J. Dent. Res. 56 (1977)
    1045-1051.
    20. J. Yu, W. Wu and M. Wang, Surf. Coat. Technol. 72 (1995) 112-119.
    21. J. A. Hautaniemi, H. Herø and J. T. Juhanoja: J. Mat. Sci. Mat. Med. 3 (1992)
    186-191.
    22. T. Togaya, M. Suzuki, S. Tsutsumi and K. Ida: Dent. Mat. J. 2 (1983) 210-219.
    23. H. Kimura, C. J. Horng and M. Okazaki: “Heat treatment effect on
    porcelain-titanium bond strength”, Advances in Joining Newer Structural
    Materials, Proceedings, International Conference, Montreal, Canada, Paper I-4
    (1990) pp. 123-128.
    24. M. Adachi, E. E. Parry and C. W. Fairhurst: J. Dent. Res. 69 (1990) 1230-1235.
    25. T. Dérand and H. Herø: Scand. J. Dent. Res. 100 (1992) 184-188.
    26. I.-C. Pang, J. L. Gilbert, J. Chai and E. P. Lautenschlager: J. Prosth. Dent.
    73 (1995) 17-25.
    27. S. N. White, L. Ho, A. A. Caputo and E. Goo: J. Prosth. Dent. 75 (1996)
    640-648.
    28. H. Yilmaz and C. Dincer: J. Dent. 27 (1999) 215-222.
    29. R. R. Wang and K. K. Fung: J. Prosth. Dent. 77 (1997) 423-434.
    30. Z. Cai, N. Bunce, M. E. Nunn and T. Okabe: Biomaterials 22 (2001) 979-986.
    31. J. L. Gilbert, D. A. Covey and E. P. Lautenschlager: Dent. Mat. 10 (1994)
    134-140.
    32. R. R. Wang, G. E. Welsch, O. R. Monteiro and I. G. Brown: Advances in the
    Science and Technology of Titanium Alloy Processing; Anaheim, CA; USA; 5-8
    Feb. 1996., 585-601.
    33. R. R. Wang, G. E. Welsch and O. Monteiro: J. Biomed. Mat. Res. 46 (1999)
    262-270.
    34. S. Atsü and S. Berksun: J. Prosth. Dent. 84 (2000) 567-574.A.
    35. K.-H. Chung, J.-G. Duh, D. Shin, D. R. Cagna and R. J. Cronin: J. Biomed. Mat.
    Res. 63 (2002) 516-521.
    36. Sadeq, Z. Cai, R. D. Woody and A. W. Miller: J. Prosth. Dent. 90 (2003) 10-17.
    37. J. E. Lemons: Clin. Orthop. 235 (1988) 220-223.
    38. K. A. Thomas, J. F. Kay, S. D. Cook and M. Jarcho: J. Biomed. Mat. Res. 21
    (1987) 1395-1414.
    39. S. D. Cook, K. A. Thomas, J. F. Kay and M. Jarcho: Clin. Orthop. 230 (1988)
    303-312.
    40. B.-Y. Chou and E. Chang: Surf. Coat. Technol. 153 (2002) 84-92.
    41. S. A. Bortz and E. J. Onesto: Bull. Am. Ceram. Soc. 52 (1973) 898-898.
    42. K. Kishitake, H. Era and S. Baba: J. Therm. Spray. Technol. 4 (1995) 353-357.
    43. Kh. G. Schmitt-Thomas and U. Dietl: Surf. Coat. Technol. 68/69 (1994) 113-115.
    44. J. B. Ernsmere: Br. J. Dent. Sci. 43 (1900) 547-550.
    45. B. Martin and C. Panzera: “Dental porcelain paste and method of using the
    same”, United States Patent, Pat. No.: 4557691 (1985).
    46. K. Weissbach, K. Krumbholz and R. Janda: “Dental ceramic, coated titanium
    prosthesis”, United States Patent, Pat. No.: 5562733 (1996).
    47. N. Thiel and K. Herbst: “Powder composition for the preparation of an opaque
    dental porcelain in the form of a paste”, United States Patent, Pat. No.:
    5679144 (1997).
    48. K. J. Anusavice, “Dental ceramics”, Phillips’ Science of Dental
    Materials/10th edition, 1996, pp. 583-618.
    49. C. B. Cartwright: Mich. Dent. Assoc. J. 43 (1961) 231.
    50. W. A. Richter et al: J. Prosthet. Dent. 15 (1965) 722.
    51. K. J. Anusavice: “Dental casting alloys”, Phillips’ Science of Dental
    Materials/10th edition, 1996, pp. 423-459.
    52. K. Asgar, F. A. Peyton: J. Dent. Res. 40 (1961) 73.
    53. F. C. Allan, K. Asgar: J. Dent. Res. 45 (1966) 1516.
    54. H. F. Morris, M. Manz, W. Stoffer and D. Weir: Adv. Dent. Res. 6 (1992) 28.
    55. A. B. Ferguson, P. G. Laing and E. S. Hodge: J. Bone Jt. Surg. 42A (1960) 77.
    56. R. Michel: Crit. Rev. Biocompat. 3 (1987) 235.
    57. S. A. Brown, L. J. Farnsworth, K. Merritt and T. D. Crowe: J. Biomed. Mat.
    Res. 22 (1988) 321-338.
    58. D. Brune: Biomaterials 7 (1986) 163-175.
    59. S. J. Lugowski, D. C. Smith, A. D. McHugh and J. C. V. Loon: J. Biomed. Mat.
    Res. 25 (1991) 1443-1458.
    60. D. C. Smith and D. F. Williams: “Tissue reaction to noble and base metal
    alloys”, Biocompatibility of Dental Materials Vol. IV/CRC Press, 1982, pp.
    51-77.
    61. A. V. Levantine: Proc. R. Soc. Med. 67 (1974) 1007.
    62. D. L. Brendlinger and J. J. Tarsitano: J. Am. Dent. Assoc. 81 (1970) 392.
    63. B. Bergman: Oral Sci. Rev. 10 (1977) 75.
    64. K. Sinbaldi, H. Rosen, S. K. Lin and M. De Angelis: Clin. Orthoped. 118
    (1976) 257.
    65. A. Gaechter, J. Alroy, G. B. J. Andersson, J. Galante, W. Rostoker and F.
    Shajowicz: J. Bone Jt. Surg. 59A (1977) 622.
    66. R. T. Bothe, K. E. Beaton and H. A. Davenport: Surg. Gynecol. Obstet. 71
    (1940) 598.
    67. G. S. Leventhal: J. Bone Jt. Surg. 33A (1951) 473.
    68. E. G. C. Clarke and J. Hickman: J. Bone Jt. Surg. 35B (1951) 467.
    69. H. Emneus, V. Stenram and J. Baecklund: Acts. Orthop. Scand. 30 (1960) 226.
    70. G. H. Hille: J. Mat. 1 (1966) 373-383.
    71. D. F. Williams and G. Meachim: J. Biomed. Mat. Res. 5 (1974) 1.
    72. R. M. Waterstrat, N. W. Rupp and O. Franklin: J. Dent. Res. 57 (1978) 254.
    73. H. J. Mueller, W. D. Reyes, J. B. Moser, A. A. Giuseppetti and R. M.
    Wateratrat: J. Dent. Res. 67 (1988) 345.
    74. M. Taira, J. B. Moser and E. H. Greener: Dent. Mat. 5 (1989) 45-50.
    75. J. Takanashi, H. Kimura, E. P. Lautenschlager, J. H. Chern Lin, J. B. Moser
    and E. H. Greener: J. Dent. Res. 69 (1990) 1800-1805.
    76. M. J. Donachie: “Titanium - a technical guide”, ASM International, Metals
    Park (OH), 1988, pp. 9-19.
    77. P. G. Wahlbeck and P. W. Gilles: J. Am. Ceram. Soc. 49 (1966) 180.
    78. B. Kasemo and J. Lausmaa: CRC Crit. Rev. Biocomp. 2 (1986) 335.
    79. P. Ducheyne and K. E. Healy: “Surface spectroscopy of calcium phosphate
    ceramic and titanium implant materials”, Surface characterization of
    biomaterials, edited by B. D. Ranter, 1988, pp. 175-192.
    80. I. I. Kornilov, A. P. Brynza, N. G. Boriskina and M. N. Zabrodskaya: Zashchi.
    Metall. 9 (1973) 77-79.
    81. P. Kofstad, K. Hauffe and H. Kjollesdal: Acta Chem. Scand. 12 (1958) 259.
    82. J. F. Johnston et al: J. Prosthet. Dent. 8 (1958) 120.
    83. S. F. Rosenstiel, M. F. Land and J. Fujimoto, “Metal-ceram restorations”,
    Contemporary Fixed Prosthodontics/2nd edition, 1995, pp. 497-525.
    84. M. Yamamoto, “Basic technique for building porcelain layers”, Basic
    technique for metal ceramics: an introduction to ceramic technique, 1990, pp.
    13-56.
    85. R. E. Loehman and A. P. Tomsia: Ceram. Bull. 67 (1988) 375-380.
    86. D. W. Jones: Trans. J. Br. Ceram. Soc. 84 (1985) 40-48.
    87. J. A. Pask and R. M. Fulrath: J. Am. Ceram. Soc. 45 (1962) 592-596.
    88. I. A. Aksay, C. E. Hoge and J. A. Pask: J. Phys. Chem. 78 (1974) 1178-1183.
    89. J.-G. Li: J. Am. Ceram. Soc. 75 (1992) 3118-3126.
    90. M. P. Borom and J. A. Pask: J. Am. Ceram. Soc. 49 (1966) 1-6.
    91. J. Jach, A. Joshi and D. Sengupta: Semic. Ins. 5 (1980) 111-122.
    92. P. Kofstad: “Dissolution of oxygen in metals and oxide scale formation”,
    High temperature corrosion, 1988, pp. 278-323.
    93. O. Miyakawa, K. Watanabe, S. Okawa, S. Nakano, M. Kobayashi and N. Shiokawa:
    Dent. Mat. J. 8 (1989) 175-185.
    94. M. J. Donachie: “Titanium - a technical guide”, ASM International, Metals
    Park (OH), 1988, pp. 28, 69, 71.
    95. Z. Liu and G. E. Welsch: Metal. Trans. A 19 (1988) 527-542.
    96. G. Welsch and A. I. Kahveci: “Oxidation behavior of titanium aluminide
    alloys”, ASM International, Metals Park (OH), 1989, pp. 207-218.
    97. M. L. Bauccio: “Technical note 9: descaling and special surface treatments”,
    ASM International, Materials Park (OH), 1994, pp. 1145-1158.
    98. G. Welsch and W. Bunk: Metal. Trans. A 13 (1982) 889-899.
    99. T. Okabe and H. Herø: Cells Mat. 5 (1995) 211-230.
    100. P. H. Dehoff and K. J. Anusavice: J. Dent. Res. 65 (1986) 643-647.
    101. J. R. Mackert, S. S. Khajotia and C. M. Russell: Dent. Mat. 12 (1996) 8-12.
    102. P. J. Steiner, R. J. Kelly and A. A. Giuseppetti: Int. J. Prosthod. 10 (1997)
    375-380.
    103. T. R. Walton and J. O. O’Brien: J. Dent. Res. 64 (1985) 476-480.
    104. H. Kimura, C. J. Horng and M. Okazaki: Journal of Osaka University Dental
    School 30 (1990) 43-52.
    105. J. R. Mackert: “Effects of thermally induced changes on porcelain- metal
    compatibility”, Perspectives in Dental Ceramics Proceedings of the Fourth
    International Symposium on Ceramics, 1988, pp. 53-64.
    106. J. R. Mackert, M. B. Butts and C. W. Fairrrhurs, Dent. Mat. 2 (1986) 32-36.
    107. J. A. Hautaniemi and H. Herø: J. Am. Ceram. Soc. 74 (1991) 1449- 1451.
    108. M. Andritschky, V. Teixeira and D. Stöver: “Thermal residual stresses in
    functionally gradient coatings”, ASM International, Materials Park (OH),
    1997, pp. 847-853.
    109. A. G. Evans, G. B. Crumley and R. E. Demaray: Oxid. Met. 20 (1983) 193-216.
    110. D. J. Srolovitz and M. P. Anderson: Acta Metall. 32 (1984) 1089-1092.
    111. R. Rolls and M. Nematollahi: Oxid. Met. 20 (1983) 19-35.
    112. C. E. Lowell, J. L. Smialek and C. A. Barrett: High temperature corrosion/ed.
    R. A. Rapp, 1983, pp. 219-226.
    113. T. W. Clyne and S. C. Gill: J. Thermal Spray Technol. 5 (1996) 401-418.
    114. O. Kesler, M. Finot, S. Suresh and S. Sampath, Acta Mat., 45 (1997)
    3123-3134.
    115. Y. C. Yang and E. Chang: Biomaterials 21 (2000) 1327-1337.
    116. Y. C. Yang and E. Chang: Biomaterials 22 (2001) 1827-1836.
    117. B. D. Cullity: Elements of X-ray diffraction/2nd edition, 1980, pp. 447-478.
    118. S. M. Wong: Thin Solid Films 53 (1978) 65-71.
    119. V. Sergo, O. Sbaizero and R. David: Biomaterials 18 (1997) 477-482.
    120. R. L. Coble and W. D. Kingery: J. Am. Ceram. Soc. 39 (1956) 377-385.
    121. R. C. Rossi: J. Am. Ceram. Soc. 51 (1968) 433-439.
    122. ASTM E-855, “Standard test methods for bend testing of metallic flat
    materials for spring applications involving static loading”, American
    Society for Testing Materials, 1990.
    123. R. C. Garvie: High Temperature Oxides, Vol. 5-II, chap.4, 1970.
    124. N. Claussen: J. Am. Ceram. Soc. 61 (1978) 85-86.
    125. E. P. Butler: Mat.. Sci. Tech. 1 (1985)417-432.
    126. ASTM C1161-02c, “Standard test method for flexural strength of advanced
    ceramics at ambient temperature”, American Society for Testing Materials,
    2002.
    127. S. S. Scherrer, I. L. Denry and H. W. A. Wiskott: Dent. Mat. 14 (1998)
    246-255.
    128. R. Chait and P. T. Lum, “Influence of test temperature on the fracture
    toughness and tensile properties of Ti-8Mo-8V-2Fe-3Al and Ti-6Al-6V-2Sn
    alloys heat treated to high strength levels”, Toughness and Fracture
    Behavior of Titanium, ASTM, 1978, pp.180-199.
    129. R. C. Garvie, R. H. Hannink and R. T. Pascoe: Nature 258 (1975) 703-703.
    130. Y. C. Yang, E. Chang and S. Y. Lee: J. Biomed. Mat. Res. Part A 67A (2003)
    886-899.
    131. V. B. Kulmeteva and S. E. Porozova: Glass Ceram. 59 (2002) 248-250.
    132. J. Stringer, Corros. Sci., 10 (1970) 513-543.
    133. R. Mevrel, Mat. Sci. Technol., 3 (1987) 531-535.

    下載圖示 校內:立即公開
    校外:2005-07-04公開
    QR CODE