簡易檢索 / 詳目顯示

研究生: 蔡含卿
Tsai, Han-Ching
論文名稱: 穿心蓮內酯於體內及體外抗癌活性之探討
In vivo and in vitro anti-cancer activities of andrographolide derived from Andrographis paniculata
指導教授: 李益謙
Li, Eric I-Chian
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 52
中文關鍵詞: 穿心蓮內酯轉移癌症細胞週期
外文關鍵詞: andrographolide, cancer, metastasis, cell cycle
相關次數: 點閱:61下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 穿心蓮(Andrographis paniculata)為爵床科植物,以往被用為抗菌、消炎解熱及免疫促進之傳統治療藥物。其中被認為最主要的活性成分為雙萜類的穿心蓮內酯。近年來陸續有研究發現穿心蓮內酯亦表現出抑癌效果。因此,我們欲進一步證實並探討其抗癌活性。首先,利用多種人類及小鼠癌細胞株進行毒殺試驗、DAPI細胞核染色法及DNA片段分析,發現穿心蓮內酯的確對於癌細胞具有抑制增生並導致細胞凋亡的作用。接下來以流式細胞儀(FACS)分析細胞週期的變化,可觀察到癌細胞在處理藥物後,其細胞週期停滯在G0/G1期。為釐清其中所牽涉的細胞週期調控蛋白,我們藉由西方墨點法(Western blotting)觀察到穿心蓮內酯可提升癌細胞中細胞週期抑制因子(cyclin dependent kinase inhibitor, CDKI),p21的表現量並降低細胞週期素依賴性激酶(cyclin dependent kinase, CDK),CDK4的含量。此外,於小鼠原位癌模式中發現穿心蓮內酯在活體內亦有抑制腫瘤細胞生長的能力;另外發現在給予藥物後,腫瘤中血管新生情形相對於控制組有減少的現象。於是進一步利用大鼠主動脈環實驗觀察到穿心蓮內酯具有抑制主動脈微脈管形成的作用。而後,由酶譜(gelatin zymography) 以及細胞移行分析(cell migration assay)亦發現穿心蓮內酯可降低癌細胞移行能力並抑制與腫瘤轉移極具相關性的物質,基質金屬蛋白酶(Matrix Metalloproteinase, MMP)-2及-9,的分泌。最後,藉由小鼠黑色素瘤肺轉移模式證實穿心蓮內酯在動物體內具有抑制癌症轉移的效果。以上結果顯示穿心蓮內酯在活體內及活體外皆具有抗癌活性。然而,在抗癌治療策略走向多元化的現今,穿心蓮內酯在詳細抗癌機制以及在臨床所發揮的抗癌功效上,還有很大的空間值得去深究探討。

    Andrographolide (AG) is a bicyclic diterpenoid lactone isolated from the leaves of Andrographis paniculata, an herbal medicine used traditionally as an anti-inflammatory drug for the treatments of laryngitis, diarrhea and rheumatoid arthritis. The present investigation aims at making a systemic study, both in vitro and in vivo, of the anti-cancer cell proliferation, cell cycle arrest, anti-angiogenesis, anti-metastasis and anti-tumor activities of AG. In vitro, AG shows anti-proliferative activity toward a variety of human cancer cell lines. FACS and Western blot analyses indicate that AG induces cells to undergo cell cycle arrest at the G0/G1 phase by inducing the expression of p21, a cyclin dependent kinase inhibitor (CDKI), and a concomitant decrease of cyclin dependent kinase 4 (CDK4). AG also exhibits anti-angiogenesis activity in both the immunostaining of CD31 and rat aortic ring assay. In a gelatin zymography assay for matrix metalloproteinase (MMP), AG inhibits the secretion of MMP-2 and -9 from A549 cells, suggesting AG is involved in suppressing metastasis. The notion is strengthened by the finding that AG inhibits the migrations of A549 and B16-F10 cells by either the Boyden chamber assay or the wound healing assay. The anti-metastasis of AG is finally supported in vivo by the reduction of number of metastasized lung nodules after a tail vein injection of B16-F10 melanoma cells into C57BL/6J mice. AG also significantly suppresses the primary implanted Lewis lung carcinoma tumor in the same mouse strain. Our data suggest that AG is an interesting pharmacophore with anti-cancer activities in vitro and in vivo. Its molecular mechanism of action deserves further elucidation in the future studies.

    口試合格證明 Abstract.........................................I 摘要.............................................II Contents.........................................III Index............................................VI Abbreviation.....................................VIII Introduction I Overview of cancer..........................1 II Cell apoptosis..............................2 III Cell cycle..................................4 IV Angiogenesis and cancer.....................6 V Metastasis and cancer.......................7 VII Review of andrographolide...................8 VI The aims of this study......................10 Materials and Methods I Materials 1. Reagents.................................11 2. Solutions................................13 II Methods 1. Cell lines...............................17 2. Cell culture.............................17 3. Cell viability assay.....................17 4. Detection of apoptosis...................18 5. DNA fragmentation assay..................18 6. Cell cycle analysis......................18 7. Rat aortic ring assay....................18 8. Gelatin zymography.......................19 9. In vitro wound healing assay.............19 10. Boyden chamber cell-migration assay......19 11. Western analysis.........................19 12. Immunohistochemistry.....................20 13. In vivo anti-tumor model.................21 14. In vivo metastatic model.................21 Results I. Growth inhibitory and apoptosis-inducing effects of andrographolide on multiple cancer cell lines..........................22 II. Andrographolide induced G0/G1 cell cycle arrests in A549 cells and altered cell cycle regulatory proteins..................22 III. Andrographolide suppressed the tumor growth and angiogenesis in LLC-bearing mice.......23 IV. Andrographolide inhibits microvessel formation in the ex vivo rat aortic ring angiogenesis assay....................24 V. Andrographlide inhibits migration and the secreted matrix metalloproteinase (MMP) activity in A549 cells...............25 VI. Andrographolide inhibits B16-F10 melanoma metastasis in C57BL/6 mice.................26 Discussion.......................................27 References.......................................31 Curriculum Vitae.................................52 Index Tab. 1 The IC50 values of andrographolide effects on various cancer cell lines....39 Fig. 1 Cell cycle control in mammalian cells...40 Fig. 2 Schematic representation of the cell cycle..............................41 Fig. 3 Andrographolide inhibits proliferation of multiple tumor cell types............42 Fig. 4 Andrographolide induces apoptosis.......43 Fig. 5 Andrographolide arrests at G0/G1 phase of cell cycle progress inA549 cells.....44 Fig. 6 Cell cycle regulatory proteins expression is altered byandrographolide.45 Fig. 7 Andrographolide inhibits tumor growth in mice inoculated with LLC cells. .....46 Fig. 8 Andrographolide decreased expression of CD31 in the LLCtumor from C57BL/6 mice..47 Fig. 9 Andrographolide exhibits dose-dependent anti-angiogenic activity on rat aortic rings............................48 Fig. 10 Andrographlide inhibits the secreted matrix metalloproteinase (MMP) activity and migration in A549 cells............49 Fig. 11 Andrographolide inhibited of B16-F10 melanoma metastasis in vivo and in vitro...............................50 Fig. 12 Adrographolide effects of on the pathology and the expression of lung metastatic nodules.....................51

    1.Andres, V. Control of vascular cell proliferation
    and migration by cyclin-dependent kinase signalling:
    new perspectives and therapeutic potential. Cardiovasc.
    Res. 63, 11-21(2004).
    2.Armstrong, J.S. Mitochondria: a target for cancer
    therapy. Br. J. Pharmacol. 147, 239-248 (2006).
    3.Ausprunk, D.H., Knighton, D.R., Folkman, J.
    Differentiation of vascular endothelium in the chick
    chorioallantois: a structural and autoradiographic
    study. Dev. Biol. 38, 237-248 (1974).
    4.Ausprunk, D.H., Folkman, J. Migration and proliferation
    of endothelial cells in preformed and newly formed
    blood vessels during tumor angiogenesis. Microvasc.
    Res. 14, 53-65 (1977).
    5.Bergsland, E.K. Vascular endothelial growth factor
    as a therapeutic target in cancer. Am. J. Health
    Syst. Pharm. 61, S4–S11 (2004).
    6.Blagosklonny, M.V. Antiangiogenic therapy and tumor
    progression. Cancer Cell 5, 13-17 (2004)
    7.Bookstein, R., MacGrogan, D., Hilsenbeck, S.G.,
    Sharkey, F., Allred, D.C. p53 is mutated in a subset
    of advanced-stage prostate cancers. Cancer Res. 53,
    3369-3373 (1993).
    8.Burgos, R.A., Seguel, K., Perez, M., Meneses, A.,
    Ortega, M., Guarda, M.I., Loaiza, A., Hancke, J.L.
    Andrographolide inhibits IFN-gamma and IL-2 cytokine
    production and protects against cell apoptosis.
    Planta Med. 71, 429-434 (2005).
    9.Bussolino, F., Mantovani, A., Persico, G. Molecular
    mechanisms of blood vessel formation. Trends. Biochem.
    Sci. 22, 251-256 (1997).
    10.Carmeliet, P., Jain, R.K. Angiogenesis in cancer and
    other diseases. Nature 407, 249-257 (2000).
    11.Cavallaro, U., Christofori, G.. Cell adhesion and
    signalling by cadherins and Ig-CAMs in cancer.
    Nat. Rev. Cancer 4, 118-132 (2004).
    12.Chambers, A.F., Groom, A.C., MacDonald, I.C.
    Dissemination and growth of cancer cells in metastatic
    sites. Nat. Rev. Cancer 2, 563-572 (2002).
    13.Chen, W., Fu, J., Liu, Q., Ruan, C., Xiao, S.
    Retroviral endostatin gene transfer inhibits human
    colon cancer cell growth in vivo. Chin. Med. J. (Engl).
    116, 1582-1584 (2003).
    14.Chen, J.H., Hsiao, G., Lee, A.R., Wu, C.C., Yen, M.H.
    Andrographolide suppresses endothelial cell apoptosis
    via activation of phosphatidyl inositol-3-kinase/Akt
    pathway. Biochem. Pharmacol. 67, 1337-1345 (2004).
    15.Cheung, H.Y., Cheung, S.H., Li, J., Cheung, C.S.,
    Lai, W.P., Fong, W.F., Leung, F.M. Andrographolide
    isolated from Andrographis paniculata induces cell
    cycle arrest and mitochondrial-mediated apoptosis in
    human leukemic HL-60 cells. Planta Med. 71, 1106-1111
    (2005).
    16.Curran, S., Murray, G.I. Matrix metalloproteinases:
    molecular aspects of their roles in tumour invasion
    and metastasis. Eur. J. Cancer 36, 1621-1630 (2000).
    17.Datto, M.B., Li, Y., Panus, J.F., Howe, D.J., Xiong,
    Y., Wang, X.F. Transforming growth factor beta induces
    the cyclin-dependent kinase inhibitor p21 through a
    p53-independent mechanism. Proc. Natl. Acad. Sci.U.S.A.
    92, 5545-5549 (1995).
    18.Dupont, J., Le Roith, D. Insulin-like growth factor 1
    and oestradiol promote cell proliferation of MCF-7
    breast cancer cells: new insights into their
    synergistic effects. Mol. Pathol. 54, 149-154 (2001).
    19.Englert, C., Maheswaran, S., Garvin, A.J., Kreidberg,
    J., Haber, D.A. Induction of p21 by the Wilms’ tumor
    suppressor gene WT1. Cancer Res. 57, 1429-1434 (1997).
    20.Ferrara, N. Role of vascular endothelial growth factor
    in the regulation of angiogenesis. Kidney Int. 56, 794-
    814 (1999).
    21.Fidler, I.J. The pathogenesis of cancer metastasis:
    the 'seed and soil' hypothesis revisited. Nat. Rev.
    Cancer 3, 453-458 (2003).
    22.Fidler, I.J., Ellis, L.M. The implications of
    angiogenesis for the biology and therapy of cancer
    metastasis. Cell 79, 185-188 (1994).
    23.Folkman, J., Merler, E., Abernathy, C., Williams, G.
    Isolation of a tumor factor responsible on
    angiogenesis. J. Exp. Med. 133, 275-288 (1971).
    24.Folkman, J. What is the evidence that tumors are
    angiogenesis dependent? J. Natl.Cancer Inst. 82, 4-6
    (1990).
    25.Folkman, J. Seminars in medicine of the Beth Israel
    Hospital, Boston. Clinical applications of research on
    angiogenesis. N. Engl. J. Med. 333, 1757-1763 (1995).
    26.Fong, T.A., Shawver, L.K., Sun, L., Tang, C., App, H.,
    Powell, T.J., Kim, Y.H., Schreck, R., Wang, X., Risau,
    W., Ullrich, A., Hirth, K.P., McMahon, G. SU5416 is a
    potent and selective inhibitor of the vascular
    endothelial growth factor receptor (Flk-1/KDR) that
    inhibits tyrosine kinase catalysis, tumor
    vascularization, and growth of multiple tumor types.
    Cancer Res. 59, 99-106 (1999).
    27.Friedl, P., Wolf, K. Tumour-cell invasion and
    migration: diversity and escape mechanisms. Nat. Rev.
    Cancer 3, 362-374 (2003).
    28.Gale, N.W., Yancopoulos, G.D. Growth factors acting via
    endothelial cell-specific receptor tyrosine kinases:
    VEGFs, angiopoietins and ephrins in vascular
    development. Genes Dev. 13, 1055-1066 (1999).
    29.Gartel, A.L., Radhakrishnan, S.K. Lost in
    transcription: p21 repression, mechanisms, and
    consequences. Cancer Res. 15, 3980-3985 (2005).
    30.Green, D.R., Reed, J.C. Mitochondria and apoptosis.
    Science 281, 1309-1312 (1998).
    31.Itoh, T., Tanioka, M., Yoshida, H., Yoshioka, T.,
    Nishimoto, H., Itohara, S. Reduced angiogenesis and
    tumor progression in gelatinase A-deficient mice.
    Cancer Res. 58, 1048-1051 (1998).
    32.Itoh, T., Tanioka, M., Matsuda, H., Nishimoto, H.,
    Yoshioka, T., Suzuki, R., Uehira, M. Experimental
    metastasis is suppressed in MMP-9-deficient mice. Clin.
    Exp. Metastasis 17, 177-181 (1999).
    33.Kapil, A., Koul, I.B., Banerjee, S.K., Gupta, B.D.
    Antihepatotoxic effects of major diterpenoid
    constituents of Andrographis paniculata. Biochem.
    Pharmacol. 46, 182-185 (1993).
    34.Kim, L.S., Huang, S., Lu, W., Lev, D.C., Price, J.E.
    Vascular endothelial growth factor expression promotes
    the growth of breast cancer brain metastases in nude
    mice. Clin. Exp. Metastasis 21, 107-118 (2004).
    35.Kim, Y.S., Milner, J.A. Targets for indole-3-carbinol
    in cancer prevention. J. Nutr. Biochem. 16, 65-73
    (2005).
    36.Kluck, R.M., Bossy-Wetzel, E., Green, D.R., Newmeyer,
    D.D. The release of cytochrome c from mitochondria: a
    primary site for Bcl-2 regulation of apoptosis. Science
    275, 1132-1136 (1997).
    37.Korsmeyer, S.J., Wei, M.C., Saito, M., Weiler, S., Oh,
    K.J., Schlesinger, P.H. Pro-apoptotic cascade activates
    BID, which oligomerizes BAK or BAX into pores that
    result in the release of cytochrome c. Cell Death
    Differ. 7, 1166-1173 (2000).
    38.Kumar, R.A., Sridevi, K., Kumar, N.V., Nanduri, S.,
    Rajagopal, S. Anticancer and immunostimulatory
    compounds from Andrographis paniculata. J.
    Ethnopharmacol. 92, 291-295 (2004).
    39.Li, C.Y., Shan, S., Cao, Y., Dewhirst, M.W. Role of
    incipient angiogenesis in cancer metastasis. Cancer
    Metastasis Rev. 19, 7-11 (2000).
    40.Li, J., Cheung, H.Y., Zhang, Z., Chan, G.K., Fong, W.F.
    Andrographolide induces cell cycle arrest at G2/M phase
    and cell death in HepG2 cells via alteration of
    reactive oxygen species. Eur. J. Pharmacol. (2007).
    41.Liu, S., Bishop, W.R., Liu, M. Differential effects of
    cell cycle regulatory protein p21WAF/Cip1 on apoptosis
    and sensitivity to cancer chemotherapy. Drug Resist
    Update 6, 183-195 (2003).
    42.Locksley, R.M., Killeen, N., Lenardo, M.J. The TNF and
    TNF receptor superfamilies: integrating mammalian
    biology. Cell 104, 487-501 (2001).
    43.Mehlen, P., Puisieux, A. Metastasis: a question of life
    or death. Nat. Rev. Cancer 6, 449-458 (2006).
    44.Nakagawa, T., Yuan, J. Cross-talk between two cysteine
    protease families. Activation of caspase-12 by calpain
    in apoptosis. J. Cell Biol. 150, 887-894 (2000).
    45.Ortega, S., Malumbres, M., Barbacid, M. Cyclin D-
    dependent kinases, INK4 inhibitors and cancer. Biochim.
    Biophys. Acta. 1602, 73-87 (2002).
    46.Pardal, R., Clarke, M.F., Morrison, S.J. Applying the
    principles of stem-cell biology to cancer. Nat. Rev.
    Cancer 3, 895-902 (2003).
    47.Rajagopal, S., Kumar, R.A., Deevi, D.S., Satyanarayana,
    C., Rajagopalan, R. Andrographolide, a potential cancer
    therapeutic agent isolated from Andrographis
    paniculata. J. Exp. Ther. Oncol. 3, 147-158 (2003).
    48.Rao, R.V., Hermel, E., Castro-Obregon, S., del Rio, G.,
    Ellerby, L.M., Ellerby, H.M., Bredesen, D.E. Coupling
    endoplasmic reticulum stress to the cell death program.
    Mechanism of caspase activation. J. Biol. Chem. 276,
    33869-33874 (2001).
    49.Sandler, A.B., Johnson, D.H., Herbst, R.S. Anti-
    vascular endothelial growth factor monoclonals in non-
    small cell lung cancer. Clin. Cancer Res. 10, 4258s-
    4262s (2004).
    50.Satyanarayana, C., Deevi, D.S., Rajagopalan, R.,
    Srinivas, N., Rajagopal, S. DRF 3188 a novel semi-
    synthetic analog of andrographolide: cellular response
    to MCF 7 breast cancer cells. BMC Cancer. 4 (2004).
    51.Scorrano, L., Korsmeyer, S.J. Mechanisms of cytochrome
    c release by proapoptotic BCL-2 family members.
    Biochem. Biophys. Res. Commun. 304, 437-44 (2003).
    52.Scorrano, L., Oakes, S.A., Opferman, J.T., Cheng, E.H.,
    Sorcinelli, M.D., Pozzan, T., Korsmeyer, S.J. BAX and
    BAK regulation of endoplasmic reticulum Ca2+: a control
    point for apoptosis. Science 300, 135-139 (2003).
    53.Sherr, C.J. D-type cyclins. Trends. Biochem. Sci. 20,
    187-190 (1995).
    54.Sherr, C.J., Roberts, J.M. CDK inhibitors: positive and
    negative regulators of G1-phase progression. Genes Dev.
    13, 1501-1512 (1999).
    55.Singha, P.K., Roy, S., Dey, S. Protective activity of
    andrographolide and arabinogalactan proteins from
    Andrographis paniculata Nees. against ethanol-induced
    toxicity in mice. J. Ethnopharmacol. 111, 13-21 (2007).
    56.Somasundaram, K., Zhang, H., Zeng, Y.X., Houvras, Y.,
    Peng, Y., Zhang, H., Wu, G.S., Licht, J.D., Weber,
    B.L., El-Deiry, W.S. Arrest of the cell cycle by the
    tumour-suppressor BRCA1 requires the CDK-inhibitor
    p21/Waf1/Cip1. Nature 389, 187-190 (1997).
    57.Steeg, P.S., Zhou, Q. Cyclins and breast cancer. Breast
    Cancer Res. Treat. 52, 17-28 (1998).
    58.Tanaka, S., Sugimachi, K., Yamashita, Y., Shirabe, K.,
    Shimada, M., Wands, J.R., Sugimachi, K. Angiogenic
    switch as a molecular target of malignant tumors. J
    Gastroenterol. 38 Suppl 15, 93-97 (2003).
    59.Thisoda, P., Rangkadilok, N., Pholphana, N.,
    Worasuttayangkurn, L., Ruchirawat, S., Satayavivad, J.
    Inhibitory effect of Andrographis paniculata extract
    and its active diterpenoids on platelet aggregation.
    Eur. J. Pharmacol. 553, 39-45 (2006).
    60.Tsai, H.R., Yang, L.M., Tsai, W.J., Chiou, W.F.
    Andrographolide acts through inhibition of ERK1/2 and
    Akt phosphorylation to suppress chemotactic migration.
    Eur. J. Pharmacol. 498, 45-52 (2004).
    61.Visen, P.K., Shukla, B., Patnaik, G.K., Dhawan, B.N.
    Andrographolide protects rat hepatocytes against
    paracetamol-induced damage. J. Ethnopharmacol. 40, 131-
    136 (1993).
    62.Wang, H., Iakova, P., Wilde, M., Welm, A., Goode, T.,
    Roesler, W.J., Timchenko, N.A. C/EBPalpha arrests cell
    proliferation through direct inhibition of Cdk2 and
    Cdk4. Mol. Cell. 8, 817-828 (2001).
    63.Wang, H., Goode, T., Iakova, P., Albrecht, J.H.,
    Timchenko, N.A. C/EBPalpha triggers proteasome-
    dependent degradation of cdk4 during growth arrest.
    Embo J. 21, 930-941 (2002).
    64.Wolfel, T., Hauer, M., Schneider, J., Serrano, M.,
    Wolfel, C., Klehmann-Hieb, E., De Plaen, E., Hankeln,
    T., Meyerzum Buschenfelde, K.H., Beach, D. A p16INK4a-
    insensitive CDK4 mutant targeted by cytolytic T
    lymphocytes in a human melanoma. Science 269, 1281-
    1284 (1995).
    65.Yanase, T., Tamura, M., Fujita, K., Kodama, S., Tanaka,
    K. Inhibitory effect of angiogenesis inhibitor TNP-470
    on tumor growth and metastasis of human cell lines in
    vitro and in vivo. Cancer Res. 53, 2566-2570 (1993).
    66.Yancopoulos, G.D., Klagsbrun, M., Folkman, J.
    Vasculogenesis, angiogenesis and growth factors:
    ephrins enter the fray at the border. Cell 93, 661-664
    (1998).
    67.Yang, J., Liu, X., Bhalla, K., Kim, C.N., Ibrado, A.M.,
    Cai, J., Peng, T.I., Jones DP, Wang X. Prevention of
    apoptosis by Bcl-2: release of cytochrome c from
    mitochondria blocked. Science 275, 1129-1132 (1997).
    68.Yuan, J.Y., Horvitz, H.R. The Caenorhabditis elegans
    genes ced-3 and ced-4 act cell autonomously to cause
    programmed cell death. Dev. Biol. 138, 33-41 (1990).
    69.Zhou, J., Zhang, S., Ong, C.N., Shen, H.M. Critical
    role of pro-apoptotic Bcl-2 family members in
    andrographolide-induced apoptosis in human cancer
    cells. Biochem. Pharmacol. 7, 136-144 (2006).

    下載圖示 校內:2012-07-13公開
    校外:2012-07-13公開
    QR CODE