| 研究生: |
林育鋒 Lin, Yu-Feng |
|---|---|
| 論文名稱: |
硫化物半導體Ba2ZnS3為基質之螢光粉體製備及其光致發光特性研究 Sythesis and photo-luminescent properties of Ba2ZnS3 based phosphors |
| 指導教授: |
張炎輝
Chang, Yen-Hwei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | 光致發光 、硫化物 、半導體 、螢光粉 |
| 外文關鍵詞: | sulfide, semiconductor, phosphors, photoluminescence |
| 相關次數: | 點閱:68 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要以開發Ⅱ-Ⅵ族半導體之新型硫化物螢光材料並研究其特性為重點。以斜方晶結構之Ba2ZnS3為基質(host)選擇,分別將過渡金屬Mn2+離子、稀土金屬Ce3+、Pr3+離子及Ce3+, Ag+離子摻雜於基質(Ba2ZnS3)中,作為發光中心(activator),並採用不同製程參數製作螢光粉體,針對其光致發光特性進行研究。
由實驗結果顯示,利用固態反應法(雙坩堝製程)製備的Ba2ZnS3:Mn+(其中Mn+為Mn2+、Ce3+、Pr3+及Ce3+, Ag+)螢光粉體,在900~1050℃煆燒,可得穩定之Ba2ZnS3單一相;並由Ba2ZnS3化合物之吸收光譜,可獲得光學能隙(energy gap) Eg≒3.18 ± 0.02 eV。Ba2ZnS3:Mn2+螢光粉體在358 nm紫外光源激發下,可有效率發出橘紅光(波峰611 nm),屬於Mn2+離子的4T1(4G)→6A1(6S)電子躍遷,以950℃煆燒16小時的Ba2ZnS3:Mn2+(0.5 mol%)粉體具有最佳的發光強度,色度座標(CIE) x= 0.632, y= 0.368。
Ba2ZnS3添加稀土金屬離子部分,光致發光機制有兩種方式:(一)間接激發發光,先由Ba2ZnS3 (Host)吸收能量再將能量轉移給稀土金屬離子(activator)而發光;(二)直接激發發光,激發光的能量直接由稀土金屬離子吸收並發光。Ba2ZnS3:Ce3+螢光粉體,在約360 nm紫外光源激發下,可有效率發出黃綠光(波峰≒ 535 nm),屬於Ce3+離子的2D(5d)→7F5/2(4f), 7F7/2(4f)電子躍遷,以1000℃煆燒2小時的Ba2ZnS3:Ce3+(0.3 mol%)粉體具有最佳的發光強度,色度座標約為x= 0.289, y= 0.569;在420 nm紫藍光源激發下,可有效率發出綠光(波峰= 497-506 nm),亦屬於Ce3+離子的2D(5d)→7F5/2(4f), 7F7/2(4f)電子躍遷,隨Ce3+離子添加濃度增加,波峰有紅移(red-shift)現象,同樣以1000℃煆燒2小時的Ba2ZnS3:Ce3+(0.3 mol%)粉體則具有最佳的發光強度,色度座標x= 0.202, y= 0.481。
Ba2ZnS3:Ce3+同時添加Ag+離子之螢光粉體,在約357或350 nm紫外光源激發下,隨添加Ce3+及Ag+離子濃度的變化,可調變出藍綠、綠和黃綠光(波峰= 495-536 nm),為Ce3+離子的2D(5d)→7F5/2(4f), 7F7/2(4f)電子躍遷,並隨Ag+離子添加濃度增加,波峰有藍移(blue-shift)現象,發光強度亦受Ag+離子的添加所影響,而以1000℃煆燒2小時的Ba2ZnS3:Ce3+(0.2 mol%), Ag(0.1 mol%)粉體,具有最佳的發光強度,色度座標(CIE) x= 0.241, y= 0.547;於420 nm紫藍光源激發下,可有效率發出綠光(波峰= 493-506 nm),同屬於Ce3+離子的2D(5d)→7F5/2(4f), 7F7/2(4f)電子躍遷,其發光性質與無添加Ag+離子之Ba2ZnS3:Ce3+螢光粉體無太大差異,隨Ce3+離子添加濃度增加,波峰亦有紅移(red-shift)現象,並以1000℃煆燒2小時的Ba2ZnS3:Ce3+(0.2 mol%),Ag(0.1 mol%)粉體,具有最佳的發光強度,色度座標(CIE) x= 0.195, y= 0.471。
Ba2ZnS3:Pr3+螢光粉體,在約360-370 nm紫外光源激發下,其放射光譜由Pr3+離子的3P0→3H4,3H5,3H6和1D2→3H4電子躍遷構成,分佈於470-520 nm、530-570 nm和585-665 nm範圍中,隨Pr3+離子添加濃度增加,1D2→3H4相較於3P0→3H4,3H5,3H6電子躍遷更易於受濃度影響有發光淬滅(quench)現象,當Pr3+離子濃度達0.4 mol%時,1D2→3H4放射峰有相對較大的強度,當Pr3+離子濃度大於4 mol%時,1D2→3H4放射峰幾乎完全消失,故藉由變化Pr3+離子濃度可調變發光顏色為白光或綠光,並以1000℃煆燒2小時的Ba2ZnS3:Pr3+(0.2 mol%)粉體則具有最佳的發光強度,色度座標(CIE) x= 0.368, y= 0.413;在456 nm藍色光源激發下,可有效率發出綠光,幾乎全來自Pr3+離子的3P0→3H4電子躍遷,以1000℃煆燒2小時的Ba2ZnS3:Pr3+(2.0 mol%)粉體具有最佳的發光強度,色度座標(CIE) x= 0.118, y= 0.474。
本研究中所製備以Ba2ZnS3為基質之不同種類螢光粉體,可藉由添加不同種類之發光中心(activator)及其濃度的調變,達到發光顏色的變化,可應用於新世代顯示器之發光材料。
This study is to search new sulfide based phosphors of Ⅱ-Ⅵ semiconductors. The semiconductor compound, Ba2ZnS3, was selected as the host material and the transition metal ion Mn2+ and the rare earth ions Ce3+, Pr3+ were introduced as activators. The synthesis and photoluminescent properties of Ba2ZnS3:M (M= Mn2+; Ce3+; Ce3+,Ag+ and Pr3+) phosphors have been investigated.
These four kinds of phosphors were all prepared via the conventional solid-state reaction using the double-crucible method. While the calcining temperature was above 900℃, pure single phase Ba2ZnS3:M phosphors were successfully synthesized. The optical bandgap of Ba2ZnS3 is at about 3.18±0.02 eV as shown in the absorption spectra. The most efficient emission of Ba2ZnS3:Mn2+ phosphors occurred at the excitation wavelength of λex= 358 nm, and the reddish-orange emission light with peak wavelength of λem= 611 nm was obtained. The photoluminescence originates from the transition 4T1(4G)→6A1(6S) of Mn2+ ions. The Ba2ZnS3 doped with 0.5 mol% Mn2+ ions had the highest luminescent intensity and best crystalline as calcined at 950℃ for 16 h. The CIE color coordinate is x= 0.632, y= 0.368 and the decay time is about 0.33 ms.
The phosphors Ba2ZnS3 doped with rare earth ions show photoluminescence in two ways: (1) under intrinsic excitation, the energy absorbed by host is transferred to the activator; (2) under direct excitation of activator, the excited energy was absorbed by the activator. Under intrinsic excitation (λex≈ 360 nm), the most efficient yellowish green luminescence of Ba2ZnS3:Ce3+ was emitted at the doping concentration 0.3 mol%. The maximum intensity of the luminescent peak was found at 535 nm and the CIE color coordinate x= 0.289, y= 0.569. Under direct excitation of activator, the emission peaks shift between 497 and 506 nm with increasing Ce3+ doping concentration. The Ba2ZnS3:(0.3 mol%)Ce3+ phosphors had the highest emission intensity and the emission peak was at 499 nm with a CIE color coordinate x= 0.202, y= 0.481. The photoluminescence all originates from the transition 2D(5d)→7F5/2(4f), 7F7/2(4f) of Ce3+ ions.
Under intrinsic excitation, the Ba2ZnS3:Ce3+ codoped with Ag+ ion phosphors could vary the color of emission light from bluish green, green to yellowish green by changing the doping concentration of Ce3+ and Ag+ ions. The sample doped with 0.2 mol% Ce3+ and 0.1 mol% Ag+ ions had a maximum PL intensity and yellowish green light emission at 516 nm with a CIE color coordinate of x= 0.241, y= 0.547. Under direct excitation of activator, the luminescent properties of the Ba2ZnS3:Ce3+,Ag+ phosphors are similar with the Ba2ZnS3:Ce3+ phosphors. The photoluminescence also originates from the 2D(5d)→ 7F5/2(4f), 7F7/2(4f) transition of Ce3+ ions.
Pr3+-doped Ba2ZnS3 phosphors exhibited emission by intrinsic excitation (a UV light with λex≈ 360-370 nm) and direct transition of activator. Under intrinsic excitation, the sample doped with 0.2 mol% Pr3+ ions emits light with a maximal intensity at 493 nm, and emits white light with a CIE color coordinate of x = 0.368, y = 0.413. Under direct transition of activator, most of the emission is in the range of 475-520 nm (3P0→3H4 transition). The sample doped with 2 mol% Pr3+ ions also had maximum emission intensity at 493 nm. Emission in the range 584-620 nm (1D2→3H4 transition) disappeared, and the CIE color coordinates were all in the green region.
All synthesized phosphor powders in this study could emit different color of light by doping different kinds of activator and varying doping concentrations. And these phosphors have potential to be the luminescent materials applied to new applications.
1 F. Levy and R. Meyer, Phosphors for Full-Color Microtips Fluorescent Displays; Proceedings of the International Display Research Conference, SID (1991) 20-23.
2 M.J. Shane, T.B. Talbot, E. Sluzky and K.R. Hesse, Zeta potential of phosphors, A: Physicochemical and Engineering Aspects, 96 (1995) 301-305.
3 M. Ando and Y.A. Ono, Electro-optical response characteristics of rare-earth-doped alkaline-earth-sulfide electroluminescent devices, J. Appl. Phys. 65 (8) (1989) 3290-3292.
4 P.T. Mai, Rare-earth calcium sulfide phosphors for cathode-ray tube displays, J. Alloys and Compounds, 225 (1995) 547-551.
5 A.A. Talin, K.A. Dean and J.E. Jaskie, Field emission displays: a critical review, Solid-State Electronics, 45 (2001) 963-976.
6 C.H. Kim, I.E. Kwon, C.H. Park, Y.J. Hwang, H.S. Bae, B.Y. Yu, C.H. Pyun and G.Y. Hong, Phosphors for plasma display panels, J. Alloys and Compounds, 311 (2000) 33-39.
7 M. Leskelä, Rare earths in electroluminescent and field emission display phosphors, J. Alloys and Compounds, 275-277 (2000) 702-708.
8 P.D. Rack and P.H. Holloway, The structure, device physics, and material properties of thin film electroluminescent displays, Materials Science and Engineering, R21 (1998) 171-219.
9 G. Mueller, Electroluminescence Ⅱ, Semiconductors and Semimetals, Academic press, San Diego, Vol. 65 (2000).
10 Y.A. Ono, Electroluminescent Displays, Series on Information Display, World Scientific Publishing, Singapore, Vol. 1 (1995).
11 S. Shionoya and W.M. Yen, Phosphor Handbook, CRC press, Florida (1999).
12 劉如熹、林益山、康佳正,“白光發光二極體使用螢光粉專利解析”,全華科技, 台灣 (2005)。
13 劉如熹、王健源、石景仁,“白光發光二極體之螢光材料介紹”,全華科技,台灣 (2003)。
14 莊賦祥,”藍綠光發光二極體”, 科學發展 349期 (2002) 46-53。
15 楊素華,“螢光粉在發光上的應用”,科學發展 358期 (2002) 66-71。
16 劉如熹、紀喨勝,“紫外光發光二極體用螢光粉介紹”,全華科技,台灣(2003)。
17 D.R. Vij, Luminescence in Solids, Plenum press, New York (1998).
18 徐敘瑢、蘇勉增,發光學與發光材料 (2004) p2。
19 G. Blasse, B.C. Grabmaier, Luminescent Materials, Springer, Berlin, (1994).
20 N.I. Meyer and F.P. Jeasen, Hot electron from silicon p-n junctions produced by ion implantation, J. Appl. Phys., 37 (11) (1966) 4297.
21 T.A. O’Brien, P.D. Rack, P.H. Holloway and M.C. Zerner, Crystal field and molecular orbital calculation of the optical transitions in Ce doped alkaline earth sulfide (MgS, CaS, SrS, and BaS) phosphors, J. Lumin., 78 (1998) 245-257.
22 N. Yamashita and S. Asano, Photoluminescence of Sm3+ ions in MgS, CaS, SrS and BaS phosphors, J. Phys. Soc. Jpn., 56 (1987) 352-358.
23 R.P. Rao, The preparation and thermoluminescence of alkaline earth sulphide phosphors, J. Mater. Sci., 21 (1986) 3357-3386.
24 X. Sun, G. Hong, X. Dong, D. Xiao, G. Zhang, G. Tang and W. Chen, Study of energy transfer between rare earth ions in CaS host by photoluminescence spectra, J. Phys. Chem. Solids, 62 (2001) 807-810.
25 Y. Tamura, Concentration quenching of infrared stimulated luminescence in CaS: Eu, Sm, Jpn. J. Appl. Phys., 33 (1994) 4640-4646.
26 N. Yamashita, S. Fukumoto, S. Ibuki and H. Ohnishi, Photoluminescence of Eu2+ and Eu3+ centers in CaS: Eu, Na phosphors, Jpn. J. Appl. Phys., 32 (1993) 3135-3139.
27 C. J. Summers, B. K. Wagner, W. Tong, W. Park, M. Chaichimansour and Y. B. Xin, Recent progress in the development of full color SrS-based electroluminescent phosphors, J. Crystal Growth, 214-215 (2000) 918-925.
28 B. Hüttl, K. O. Velthaus, U. Troppenz, R. Herrmann and R. H. Mauch, SrS: Ce, Mn, Cl - A novel efficient EL phosphor, J. Crystal Growth, 159 (1996) 943-946.
29 N. Yamashita, T. Ohira, H. Mizuochi and S. Asano, Luminescence of Pb2+ centers in SrS and SrSe phosphors, J. Phys. Soc. Jpn., 53 (1984) 419-426.
30 Y. Kaneko and T. Koda, New developments in Ⅱa-Ⅵb (alkaline-earth chalcogenide) binary semiconductors, J. Crystal Growth, 86 (1988) 72-78.
31 R. P. Rao, Preparation and characterization of BaS phosphors, J. Mater. Sci. Letters, 2 (1983) 106-110.
32 S. Asano, Y. Nakao, N. Yamashita and I. Matsuyama, Luminescence et transition non radiative 3T1u→ 3A1u dans le luminophore BaS: Bi3+, Phys. Stat. Sol. (b), 133 (1986) 333-344.
33 L. Qi, B.I. Lee, J.M. Kim, J.E. Jang and J.Y. Choe, Synthesis and characterization of ZnS: Cu, Al phosphor prepared by a chemical solution method, J. Lumin., 104 (2003) 261-266.
34 W. Park, J.S. King, C.W. Neff, C. Liddell and C.J. Summers, ZnS-based photonic crystals, Phys. Stat. Sol. (b), 229 (2002) 949-960.
35 A.P. Greeff and H.C. Swart, Quantifying the cathodoluminescence generated in ZnS-based phosphor powders, Surf. Interface Anal., 34 (2002) 593-596.
36 Y.Y. Chen, J.G. Duh, B.S. Chiou and C.G. Peng, Luminescent mechanisms of ZnS: Cu: Cl and ZnS: Cu: Al phosphors, Thin Solid Films, 392 (2001) 50-55.
37 A.P. Greeff and H.C. Swart, Monte Carlo simulation on the electron beam incident angle with spherical particles applied to the energy loss in ZnS phosphor powders, Surf. Interface Anal., 29 (2000) 807-817.
38 S. Nakamura, GaN and related luminescence materials, Phosphor Handbook, CRC press, Florida (1999) 293-306.
39 G. Hatakoshi, (Al,Ga,In)(P,As) alloys emitting visible luminescence, Phosphor Handbook, CRC press, Florida (1999) 277-284.
40 K. Iga, (Al,Ga,In)(P,As) alloys emitting infrared luminescence, Phosphor Handbook, CRC press, Florida (1999) 285-292.
41 H. Matsunami, Silicon carbide (SiC) as a luminescence material, Phosphor Handbook, CRC press, Florida (1999) 307-314.
42 S. Tanimizu, Luminescence center of ns2-type ions, Phosphor Handbook, CRC press, Florida (1999) 141-152.
43 M. Tamatani, Luminescence centers of transition metal ions, Phosphor Handbook, CRC press, Florida (1999) 153-176.
44 T. Kano, Luminescence centers of rare-earth ions, Phosphor Handbook, CRC press, Florida (1999) 177-200.
45 M. Morita, Luminescence centers of complex ions, Phosphor Handbook, CRC press, Florida (1999) 201-212.
46 蔡濱祥,尖晶石(MgxZn1-x)(In2-yGay)O4:Eu3+,Tb3+螢光粉體製備及其光致發光特性研究,國立成功大學材料科學及工程學系博士論文,民國94年。
47 陳俞仲,錫酸鹽M2SnO4 (M= Ca, Sr, Zn)螢光粉之合成與螢光特性研究,國立成功大學材料科學及工程學系博士論文,民國94年。
48 A. Jablonski (1898-1980): Born in Voskresenovka, Ukraine. Started studying physics at Kharkov University and continued after the 1st World War at Warsaw under S. Pienkowski. He received his PhD in 1930. In 1935 he suggested the famous diagram, commonly known under his name, which makes it possible to explain both the kinetics and spectra of fluorescence, phosphorescence and delayed fluorescence.
49 S. Shionoya, Photoluminescence, Luminescence of Solids, Plenum press (1998) 95-133.
50 徐敘瑢、陳憲偉,固體材料的光致發光,光電材料與顯示技術,五南,台灣,67-88 (2004)。
51 G. Blasse, Luminescent centers in insulators, Solid State Luminescence, Chapman & Hall press, Cambridge (1993) 21-51.
52 D.S. McClure, Optical Spectra of Exchange Coupled Mn++ Ion Pairs in ZnS:MnS, J. Chem. Phys., 39 (1963) 2850.
53 H. Yamamoto, Ⅱa-Ⅵb compounds, Phosphor Handbook, CRC press, Florida (1999) 217-230.
54 J.A. Deluca, An Introduction to Luminescence in Inorganic Solids, J. Chem. Edu., 57 (8) (1980) 541-545.
55 R.C. Ropp, Design of Phosphors, Luminescence and the solid state, Elsevier Science Publishers, B. V., The Netherlands, chapter 8 (1991).
56 S. Shionoya, Ⅱb-Ⅵb compounds, Phosphor Handbook, CRC press, Florida (1999) 231-257.
57 R. Hoppe, Untersuchungen an ternären Sulfiden, Angew. Chem. 71 (1959) 457.
58 H.G. Schnering and R. Hoppe, Zur Kenntnis des Ba2ZnS3, Z. anorg. Allgem. Chem., 312 (1961) 99-109.
59 B.H. Megson, M.Sc. Thesis, Thames Polytechnic, London (1971).
60 A. Vecht, M.H. Higton, J.H. Williamson, B. Megson and D.M. Nichólas, Extended Abstracts, Spring Meeting, Electrochem Soc., San Francisco, Vol. 74-1, Abstract (1974) 93.
61 R.A.M. Scott, D.M. Nichólas and M.R. Shropshall, The growth of single crystals of Ba2ZnS3, J. Crystal Growth, 38 (1977) 269-271.
62 T. Kushida, Y. Tanaka and Y. Oka, Absorption Spectra of Optically Pumped ZnS:Mn, J. Phys. Soc. Jpn., 37 (1974) 1341-1348.
63 R.N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, Optical properties of manganese-doped nanocrystals of ZnS, Phys. Rev. Lett., 72 (1994) 416.
64 R.N. Bhargava, D. Gallagher and T. Welker, Doped nanocrystals of semiconductors: a new class of luminescent materials, J. Lumin., 60,61 (1994) 275.
65 R. N. Bhargava, Doped nanocrystalline materials - Physics and applications, J. Lumin., 70 (1996) 85.
66 M. Tanaka, J. Qi and Y. Masumoto, Comparison of energy levels of Mn2+ in nanosized- and bulk-ZnS crystals, J. Lumin., 87-89 (2000) 472-474.
67 C. Benecke and H.E. Gumlich, in Semiconductors and Semimetals, edited by J.K. Furdyna and J. Kossut (Academic, New York), 25 (1988) 85-115.
68 D.T. Palumbo and J.J. Brown Jr, Electronic states of Mn2+-activated phosphors.,J. Electrochem. Soc., 117 (1970) 1184-1188.
69 H.Y. Lu and S.Y. Chu, The mechanism and characteristics of ZnS-based phosphor powders, J. Crystal Growth, 265 (2004) 476-481.
70 K. Yan, C. Duan, Y. Ma, S. Xia, and J.C. Krupa, Photoluminescence lifetime of nanocrystalline ZnS:Mn2+, Phys. Rev. B, 58 (1998) 13585.
71 H. Hu and W. Zhang, Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles, Opt. Mater., 28 (2006) 536-550.
72 M.J.J. Lammers, H.C.G. Verhaar, and G. Blasse, Luminescence of Ce super (3+) and Tb super (3+) in M sub (3)(PO sub (4)) sub(2)(M= Sr, Ba), Mater. Chem. Phys., 16 (1986) 63-66.
73 P.V. Kelsey Jr and J.J. Brown Jr, Ce3+-Activated Photoluminescence in the BaO-SrO-SiO2 System, J. Electrochem. Soc., 123 (1976) 1384.
74 Y.Q. Li, G. de With and H.T. Hintzen, Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8 (M= Ca, Sr, Ba) materials, J. Lumin., 116 (2006) 107-116.
75 J.C. van’t Spijker, P. Dorenbos, C.W.E. van Eijk, K. Krämer and H.U. Gűdel, Scintillation and luminescence properties of Ce3+ doped K2LaCl5, J. Lumin., 85 (1999) 1-10.
76 G. Blasse, W. Schipper, and J.J. Hamelink, On the quenching of the luminescence of the trivalent cerium ion, Inorg. Chem. Acta., 189 (1991) 77.
77 T.R.N. Kutty, Luminescence of Ce super(3+)-doped aluminoborates M sub(3)Al sub(6)B sub(8)O sub(24) (M = Mg, Ca, Sr, Ba), Mater. Res. Bull. 25 (1990) 343-348.
78 G. Blasse, W. Schipper and J.J. Hamelink, On the quenching of the luminescence of the trivalent cerium ion, Inorg. Chim. Acta, 189 (1991) 77-80.
79 G. Blasse, Prog. Solid State Chem., 18 (1988) 79.
80 R.C. Powell and G. Blasse, Struct. Bonding (Berlin), 42 (1980) 43.
81 J.C. van’t Spijker, P. Dorenbos, C.W.E. van Eijk, J.E.M. Jacobs, H.W. den Hartog, N. Korolev, Luminescence and scintillation properties of BaY2F8:Ce3+, BaLu2F8 and BaLu2F8:Ce3+, J. Lumin., 85 (1999) 11-19.
82 S.P. Chernov, L.I. Devyatkova, O.N. Ivanova, A.A. Kaminskii, V.V. Mikhailin, S.N. Rudnev and T.V. Uvarova, 5d 1 4f N 1–4f N absorption and luminescence of Ce3+, Pr3+ and Nd3+ ions in BaY2F8 single crystal, Phys. Stat. Sol. A, 88 (1985) K169.
83 G. Blasse and A. Bril, A new phosphor for flying-spot cathode-ray tubes for color television: yellow-emitting Y3Al5O12-Ce3+, Appl. Phys. Lett., 11 (1967) 53.
84 H. Lihui, Z. Xiao and L. Xingren, Studies on luminescence properties and crystallographic sites of Ce3+ in Ca3MgSi2O8, J. Alloys and Compounds, 305 (2000) 14-16.
85 R.S. Meltzer and S.P. Feofilov, Spectral hole burning in the 4f–5d transition of Ce3+ in LuPO4 and YPO4, J. Lumin., 102-103 (2003) 151.
86 Y.Q. Li, G. de With and H.T. Hintzen, Synthesis, structure and luminescence properties of Eu2+ and Ce3+ activated BaYSi4N7, J. Alloys and compounds, 385 (2004) 1-11.
87 P. Yang, G.Q. Yao and J.H. Lin, Photoluminescence of Ce3+ in haloapatites Ca5(PO4)3X, Inorg. Chem. Commun., 7 (2004) 302-304.
88 N. Kristianpoller, A. Shmilevich, D. Weiss, R. Chen and N. Khaidukov, Luminescence of LiKYF5:Pr3+ crystals, Radiat. Measur., 33 (2001) 637-640.
89 C. de Mello Donegá, G.J. Dirksen, H.F. Folkerts, A. Meijerink and G. Blasse, The vibronic spectroscopy and luminescence concentration quenching of the Pr3+ ion in La2O3, LaOF and LiYF4, J. Phys. Chem. Solids, 56 (1995) 267-276.
90 C. de Mello Donegá, A. Meijerink and G. Blasse, Non-radiative relaxation processes of the Pr3+ ion in solids, J. Phys. Chem. Solids, 56 (1995) 673-685.
91 A. Jouini, J. C. Gâcon, M. Ferid and M. Trabelsi-Ayadi, Luminescence and scintillation properties of praseodymium poly and diphosphates, Opt. Mater. (Amsterdam, Neth.), 24 (2003) 175.
92 B. Di Bartolo and B. E. Bowlby, Spectroscopic properties of trivalent praseodymium in barium yttrium fluoride, J. Lumin., 102-103 (2003) 481.
93 I. Sokólska, S. Golab, M. Baluka and W. Ryba-Romanowski, Quenching of Pr3+ emission in single crystals of K5PrxLa1−xLi2F10, J. Lumin., 91 (2000) 79-86.
94 R. Lian, M. Yin, W. Zhang, L. Lou and J.C. Krupa, Absorption and fluorescence spectra of Pr3+ in YPO4, J. Alloys and Compounds, 311 (2000) 97-99.
95 H. E. Hoefdraad and G. Blasse, Green emitting praseodymium in calcium zirconate, Physica Status Solidi (a), 29 (1975) K95-K97.
96 J. Hegarty, D.L. Huber and W.M. Yen, Fluorescence quenching by cross relaxation in LaF3:Pr3+, Phys. Rev. B, 25 (1982) 5638-5645.
97 E. van der Kolk, P. Dorenbos, A. P. Vink, R. C. Perego, C. W. van Eijk, and A. R. Lakshmanan, Vacuum ultraviolet excitation and emission properties of Pr3+ and Ce3+ in MSO4 (M=Ba, Sr, and Ca) and predicting quantum splitting by Pr3+ in oxides and fluorides, Phys. Rev. B, 64 (2002) 195129.