簡易檢索 / 詳目顯示

研究生: 徐禮業
Hsu, Li-Yeh
論文名稱: 利用銅在碳及其他載體上為觸媒以NH3還原NO反應之研究
Studies on Catalytic Reduction of NO with NH3 over Cu Catalysts Supported on Carbon and Other Carriers
指導教授: 鄧熙聖
Temng, Hsisheng
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 115
中文關鍵詞: 選擇性觸媒還原法一氧化氮氧化鈦氧化鋁MCM41氧化銅含氧官能基活性碳
外文關鍵詞: Selective Catalytic Reduction, Nitric oxide, Alumina, Titania, MCM41, Oxygen-containing functional groups, Copper Oxide, Activated Carbon, Ammonia
相關次數: 點閱:74下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在利用氨還原一氧化氮的選擇性觸媒還原法(Selective catalytic reduction, SCR)之研究中,以金屬氧化物為載體之觸媒其反應溫度多在270-430℃之間,且觸媒容易被硫化物等物質毒化,常需配合脫硫、除塵等設備,但經處理後氣體的溫度又低於NO去除之操作溫度,需再加熱氣體至操作溫度範圍,這種觸媒使用上較耗費人力、物力及財力。本研究欲發展價格低廉、反應操作溫度低及具高活性的觸媒,用來取代現行的觸媒而降低SCR反應操作時的成本。
      在利用銅在碳及其他載體上為觸媒進行氨還原一氧化氮的研究中,我們發現由於載體的不同,直接改變了銅的還原性質,間接影響到觸媒催化一氧化氮還原的活性,其中以活性碳為載體時其表面上的氧化銅最容易被還原,且在反應溫度250℃以下即有良好的一氧化氮還原活性。另外,研究發現利用無雜質的活性碳(PFC)為觸媒進行反應時,PFC幾乎沒有任何活性,而含浸氧化銅後之PFC觸媒活性明顯地增加,且觸媒活性隨著氧化銅含浸量增加而上升的。研究中亦發現活性碳表面含氧官能基的存在會增加觸媒活性,但催化一氧化氮還原的能力遠不如活性碳表面的氧化銅,而觸媒的活性主要受制於觸媒表面氧化銅的分散性。然而,因熱處理溫度過高所引起的觸媒失活現象,可利用硝酸處理而輕易恢復具有最佳活性狀態的觸媒。
      在SCR反應中當反應溫度在200℃時,含浸8 wt.%氧化銅的活性碳觸媒即有100%的NO轉化率。在動力學解析上,我們發現Mars-van Krevelen模式能套適觸媒在SCR反應中的反應行為,因此我們可用此模式來預測不同反應條件的觸媒反應行為。

      The most widely employed catalysts in the SCR process are made of metal oxides or zeolites, which have optimum reaction temperatures ranging within 270–430 °C. Under this circumstance, reheating would be needed to bring the flue gas to the desired temperature if the catalyst bed were to be situated after the electrostatic precipitator and desulurization plant. The operative coats of SCR using the present catalysts are very expensive. In this study, we went to develop the more chip, lower operation temperature, and high activity of catalysts to replace the present catalysts. We found that the redox properties of copper oxide could be changed by the nature of supports and influence the activity of catalysts. The copper oxide over activated carbon is easily reduced and there is a good catalytic activity for NO reduction below 250 ºC.
      In addition, there are no activity over activated carbon (PFC) without ash content for catalytic NO reduction with NH3. The CuO impregnated on PFC can clearly increase activity of catalysts. The activity increases with the impregnated amount of CuO. The existences of oxygen-containing functional groups and copper oxide over activated carbon will increase the activity for NO reduction with NH3. Compared with CuO over PFC, oxygen-containing functional groups has less activity. The activity of catalysts is influenced by the dispersion of copper oxide over PFC. However, the disactivated catalysts, made by the higher heat treatment, can be regenerated by 1N HNO3.
      For selective catalytic NO reduction with NH3, NO conversion is near 100% over PFC catalyst, impregnated 8 wt.% CuO, at 200 ºC. In the kinetic studies, Mars-van Krevelen model can fit the data of copper-supported catalysts. And the behavior of catalysts can be predicted at different reaction conditions by Mars-van Krevelen model.

    中文摘要 I 致謝 III 總目錄 IV 表目錄 VII 圖目錄 VIII 第1章 緒論 1  1.1. 前言 1  1.2. 研究背景 2    1.2.1. 氮氧化物對環境的影響 2    1.2.2. 氮氧化物的處理技術 2    1.2.3. 選擇性觸媒還原法 3      1.2.3.1. 載體 4      1.2.3.2. 活性物質 7    1.2.4. 觸媒發展現況 8  1.3. 研究動機 10 第二章 理論說明 15  2.1. 活性碳製造 15    2.1.1. 碳化 16    2.1.2. 活化 17      2.1.2.1. 物理活化 17      2.1.2.2. 化學活化 19    2.1.3. 表面改質 20  2.2. 孔隙性質分析 21    2.2.1. BET方程式 23    2.2.2. D-R、D-P與D-A等溫吸附模式 23  2.3. 碳表面化學分析 26  2.4. 觸媒反應動力學模式研究 27    2.4.1. Power-rate Law 模式 28    2.4.2. Langmuir-Hinshelwood 模式 28    2.4.3. Eley-Rideal 模式 29    2.4.4. Mars-Van Krevelen 模式 30    2.4.5. 反應速率常數與活化能之關係 32 第三章 實驗藥品設備與實驗 37  3.1. 實驗藥品與設備 37    3.1.1. 實驗用氣體 37    3.1.2. 實驗用藥品 37    3.1.3. 實驗設備 38  3.2. 實驗步驟 38    3.2.1. 載體的選用與製作 38      3.2.1.1. MCM41的合成 39      3.2.1.2. 活性碳製作 39    3.2.2. 觸媒製作 41    3.2.3. 觸媒表面結構測試 42    3.2.4. 觸媒活性測試 42    3.2.5. 程溫分解實驗(TPD) 43    3.2.6. 氨氣程溫脫附實驗 (NH3-TPD) 43    3.2.7. 一氧化氮程溫脫附實驗 (NO -TPD) 44    3.2.8. 程溫還原實驗 (TPR) 44      3.2.8.1. H2-TPR 45      3.2.8.2. CO-TPR 45    3.2.9. 動力學實驗設計 45    3.2.10. 氧氣處理 46    3.2.11. 酸處理 46    3.2.12. 觸媒其他性質分析 47 第四章 不同載體對銅觸媒活性的影響 53  4.1. 前言 53  4.2. 實驗 54    4.2.1. 觸媒製作 54    4.2.2. 實驗內容 54  4.3. 結果與討論 54    4.3.1. 觸媒的物理特性 54    4.3.2 觸媒活性測試 55    4.3.3. 觸媒表面活性銅的分散情形 57    4.3.4. 觸媒表面氧化銅與觸媒載體間的作用力 58  4.4. 結論 60 第五章 熱處理溫度對銅/碳觸媒活性的影響及活性再生 69  5.1. 前言 69  5.2. 實驗 70    5.2.1. 觸媒製作 70    5.2.2. 實驗內容 70  5.3. 結果與討論 71    5.3.1. 碳觸媒的物理特性 71    5.3.2. 熱處理溫度對觸媒活性的影響 72    5.3.3. 再生 74  5.4. 結論 76 第六章 銅、鐵/碳觸媒活性分析及動力學研究 83  6.1. 前言 83  6.2. 實驗 84    6.2.1. 觸媒製作 84    6.2.2. 實驗內容 84  6.3. 結果與討論 85    6.3.1. 觸媒的孔隙結構 85    6.3.2. 觸媒活性測試 85    6.3.3. 觸媒的吸附特性 86    6.3.4. 還原能力的趨勢 87    6.3.5. 動力學分析 89      6.3.5.1. Power-rate Law模式 89      6.3.5.2. Langmuir-Hinshelwood模式 90      6.3.5.3. Mars-van Krevelen模式 91    6.3.6. 反應機構推衍 92  6.4. 結論 93 第七章 總結與展望 107  7.1 總結 107  7.2 未來展望 108 參考文獻 109 作者自述 114

    1. 鄧熙聖,國內外選擇性觸媒還原法應用狀況及技術發展調查, 行政院國家科學委員會專題研究計畫, 1997.

    2. 吳榮宗,氮氧化物防治技術及未來發展趨勢,工業污染防治, 1994, 48, 1, p.26-41.

    3. 張君正,張木彬,氮氧化物生成機制與控制技術之探討, 1994, 50, 4, p.19-35.

    4. 楊士慶,張志成,簡介低氮氧化物燃燒技術,化工技術, 1995, 3, 7, 7, p.146-159.

    5. Pârvulescu, V.I.; Grange, P.; Delmon, B. Catal. Today 1999, 46, 233.

    6. 吳榮宗,工業觸媒概論,國興出版社,新竹,1989, p.33-250.

    7. Pearson, I.M.; Ryu, H.; Wong, W.C.; Nobe, K. Ind. Eng. Chem. Prod. Res. Dev. 1983, 22, 381.

    8. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Langmuir 1998, 14, 3160.

    9. Iwamoto, T.; Yahiro, H.; Tanda, K.; Mizuno, N.; Mine, Y.; Kagawa, S. J. Phys. Chem. 1991, 95, 3727.

    10. Muñoz-Guillena, M. J.; Illán-Gómez, M. J.; Martín-Martínez, J. M.; Linares-Solano, A.; Salinas-Martínez. Energy Fuels 1992, 9, 6.

    11. Teng, H.; Suuberg, E. M.; Calo, J. M. Energy & Fuels 1992, 6, 398.

    12. Shikada, T.; Fujimoto, K.; Kunugi, T.; Tominaga, H.; Kaneko, S.; Kubo, Y. Ind. Eng. Chem. Prod. Res.Des. 1981, 20, 91.

    13. Shikada, T.; Fujimoto, K.; Kunugi, T.; Tominaga, H. J. Chem. Tech. Biotechnol. A 1983, 33, 446.

    14. Chan, L-K.; Sarofim, A-F.; Beer, J-M.; Combustion and Flame 1983, 52, 37.

    15. Ahmed, S-N.; Baldwin, R.; Derbyshire, F.; McEnaney B.; Stencel, J. Fuel 1993, 72, 287.

    16. Kagawa, A.; Ogawa, H.; Furukawa, H.; Teraoka, Y. Chem. Lettl. 1991, 407.

    17. Bauerle, G.L.; Wu, S.C.; Nobe K. Ind. Eng. Chem. Prod. Res. Dev. 1975, 14, 268.

    18. Bauerle, G.L.; Wu, S.C.; Nobe K. Ind. Eng. Chem. Prod. Res. Dev. 1978, 17, 117.

    19. Fujimoto, K.; Shikada, T.; Kunugi, T.; Tominaga, H. Nenryo Kyokaishi 1977a, 56, 267.

    20. Fujimoto, K.; Shikada, T.; Kunugi, T.; Tominaga, H. Nenryo Kyokaishi 1977b, 56, 666.

    21. Chan, L-K.; Sarofim, A-F.; Beer, J-M.; Combustion and Flame 1983, 52, 37.

    22. Mochida, I.; Ogaki, M.; Fujitsu, H.; Komatsubara, Y.; Ida, S. Fuel 1983, 62, 867.

    23. Hjalmarsson, A.-K. NOx Control Technologies for Coal Combustion, IEA Coal Research, London, 1990, p.40.

    24. Benitez, J. Control of Nitrogen Oxides, Process Engineering and Design for Air Pollution Control; Prentice-Hall, 1993, Chapter 6.

    25. Wood, S. C. Chemical Engineering Progress 1994, January, 32.

    26. Wittler, W.; Schutte, K.; Rotzoll, G.; Schugerl, K. Fuel 1988, 67, 438.

    27. Furusawa, T.; Kunil, D.; Oguma, A.; Yamada, N. International Chemical Engineering 1980, 20, 239.

    28. Bosch, H.; Hanssen, F. Catal. Today 1988, 2, 369.

    29. Teng, H.; Suuberg, E. M.; Calo, J. M. Energy & Fuels 1992, 6, 398.

    30. Shikada, T.; Fujimoto, K.; Kunugi, T.; Tominaga, H.; Kaneko, S.; Kubo, Y. Ind. Eng. Chem. Prod. Res.Des. 1981, 20, 91.

    31. Shikada, T.; Fujimoto, K.; Kunugi, T.; Tominaga, H. J. Chem. Tech. Biotechnol. A 1983, 33, 446.

    32. Chan, L-K.; Sarofim, A-F.; Beer, J-M.; Combustion and Flame 1983, 52, 37.

    33. Wigmans, T. Industrial Aspects of Production and Use of Activated Carbons. Carbon 1989, 27, 13.

    34. Teng, H.; Serio, M. A.; Wójtowicz, M. K.; Bassilakis, R.; Solomon P. R. Ind. Eng. Chem. Res. 1995, 34, 3102.

    35. Kühl, H., Kashani-Motlaagh, M.M., Mühlen, H.J. and Van Heek, K.H., Fuel 1992, 71, 879.

    36. Ruhl, M.J., Chemical Engineering Progress 1993, 89, 37

    37. Caturla, F.; Molina-Sabio, M.; Rodrfguez-Reinoso, F. Carbon 1991, 29, 1991.

    38. Jagtoyen, M.; Thwaites, M.; Stencel, J.; Deryshire, F. Carbon 1992, 30, 1089.

    39. Laine, J.; Calafat, A. Carbon 1991, 29, 949.

    40. Laine, J.; Yunes, S. Carbon 1992, 30, 601

    41. Ahmadpour A.; Do D. D. Carbon 1996, 34, 471.

    42. Tamon, H.; Okazaki, M. Carbon, 1996, 34, 741.

    43. Figueiredo, J. L.; Pereira, M. F. R.; Freitas, M. M. A.; Orfao, J. J.M. Carbon 1999, 37, 1379.

    44. Moreno-Castilla, C.; Carrasco-Marín, F.; Maldonado-Hódar, F.J.; Rivera-Utrilla, J. Carbon, 1998, 36, 145.

    45. Iwamoto, M.; Yokoo, S.; Sakai, K.; Kagawa, S., J. Chem. Soc., Faraday Trans. 1981, 177, 1629.

    46. Kagawa, S.; Ogawa, H.; Furukawa, H.; Teraoko, Y. Chem. Lett. 1991, 407.

    47. Lowell, S.; and Shields, J. E. Powder Surface Area and Porosity, 3rd ed.; Chapman & Hall: London 1991.

    48. Ruthven, D. M. Principles of Adsorption and Adsorption Process John Wiley & Sons: New York 1984.

    49. Do, D. D. Adsorption Analysis: Equilibria and Kinetics, Imperial College Press: London 1998.

    50. Suzuki, M. Adsorption Engineering, Elsevier: Tokyo 1990.

    51. Mattson, J. S.; Mark, Jr. H. B. Activated Carbon: Surface Chemistry and Adsorption from Solution, Wiley-Vch: New York 1998.

    52. Kinoshita, K. Carbon: Electrochemical and Physicochemical Properties, John Wiley & Sons: New York 1988.

    53. 劉炫邦, 使用以氧化鋁擔體之混合型金屬氧化物觸媒催化二硫化二甲基與甲烷氧化分解反應-酸處理之影響及反應動力, 國立成功大學大學化工研究所碩士論文, 1998.

    54. Mars, P.; Van Krevelen, D.W. Special Supplement to Chem Eng Sci, 1954, 3, 41.

    55. Satterfield, C. N. Heterogeneous Catalysis in Practice, McGraw-Hill, New Year, p.46.

    56. Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T-W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; Higgins, J.B.; Schlenker, J.L. J. Am. Chem. Soc. 1992, 114, 10834.

    57. Benítez, J. Process Engineering and Design for Air pollution Control, Prentice-Hall, Englewood Cliffs, NJ, 1993, p.254.

    58. Van der Grigt, C.J.G.; Woldhuis, A.F.; Maaskant, O.L. Catal. Today 1996, 27, 23.

    59. Suárez, A.; Jung, S.M.; Avila, P.; Grange, P.; Blanco, J. Catal. Today 2002, 75, 331.

    60. Komatsubara, Y.; Ida, S.; Fujitsu, H.; Mochida, I. Fuel 1984, 63, 1738.

    61. Kusakabe, K.; Kashima, M.; Morooka, S.; Kato, Y. Fuel 1988, 67, 714.

    62. Singoredjo, L.; Kapteijn, F.; Moulijn, J. A.; Martín-Martínez, J.-M.; Boehm, H.-P. Carbon 1993, 31, 213.

    63. Ku, B. J.; Lee, J. K.; Park, D.; Rhee, H.-K. Ind. Eng. Chem. Res. 1994, 33, 2868.

    64. Izquierdo, M. T.; Rubio, B. Environ. Sci. Technol. 1998, 32, 4017.

    65. Muñiz, J.; Marban, G..; Fuertes, A.B. Appl. Catal. B 1999, 23, 25.

    66. Teng, H.; Hsu, Y.-F.; Tu, Y.-T. Appl. Catal. B 1999, 20, 145.

    67. Richter, E.; Schmidt, H.-J.; Schecker H.-G. Chem. Eng. Technol. 1990, 13, 332.

    68. Zwinkels, M.F.M.; Jaras, S.G..; Menon, P.G. Cata. Rev. Sci. Eng. 1993, 35, 1743.

    69. Trimm, D.L. Appl. Catal. 1983, 7, 249.

    70. Lee, J.K.; Suh, D.J.; Park, S.; Fuel 1993, 72, 935.

    71. Lee, J.K.; Park, T.-J.; Park, D.; Ind. Eng. Chem. Res. 1993, 32, 1882.

    72. Long, R.Q.; Yang, R.T. Ind. Eng. Chem. Res. 1999, 38, 873.

    73. Moretti, G..; Dossi, C.; Fusi, A.; Recchia, S.; Psaro, R. Appl. Catal. B 1999, 20, 67.

    74. Lee, C.-Y.; Choi, K.-Y.; Ha, B.-H. Appl. Catal. B 1994, 5, 7.

    75. Oi-Uchisawa, J.; Obuchi, A.; Enomoto, R.; Liu, S.; Nanba, T.; Kushiyama, S. Appl. Catal. B 2000, 26, 17.

    76. Boyce, A.L.; Graville, S.R.; Sermon, P.A.; Vong, M.S.W. React. Kinet. Catal. Lett. 1991, 44, 1.

    77. Dandekar, A.; Vannice, M.A. Appl. Catal. B 1999, 22, 179.

    78. Valyon, J.; Hall, W.K. J. Phys. Chem. 1993, 97, 1204.

    79. Suárez, S.; Jung, S.M.; Avila, P.; Grange, P.; Blanco, J. Catal. Today 2002, 75, 331.

    80. Kim, T.-W.; Kang, M.; Koh, H.-L.; Kim, K.-L. J. of Chem. Eng. of Jap. 2001, 34, 221.

    81. Curtin, T.; Regan, F.O.; Deconinck, C.; Knüttle, N.; Hodnett, B.K. Catal. Today 2000, 55, 189.

    82. Komova, O.V.; Simakov, A.V.; Rogov, V.A.; Kochubei, D.I.; Odegova, G.V.; Kriventsov, V.V.; Paukshtis, E.A.; Ushakov, V.A.; Sazonova, N.N.; Nikoro, T.A. J. molecular catal. A 2000, 161, 191.

    83. Sang, M.J.; Soon, H.J.; Kyung, S.Y.; Sang, D.K. Ind. Eng. Chem. Res. 1999, 38, 2210.

    84. Centi, G.; Passarini, N.; Perathoner, S.; Riva, A.; Stella, G. Ind. Eng. Chem.Res. 1992, 31, 1963.

    85. Nam, I.S.; Eldridge, J.W.; Kittrell, J.R. Ind. Eng. Chem. Prod. Res. Dev. 1986, 25, 186.

    86. Blanco, J.; García, J.F.; Avila, P.; Melo, F. J. Phys. Chem. 1986, 90, 4789.

    87. Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; Muilenberg, G.E. Handbook of X-Ray photoelectron spectroscopy, Perkin-Elmer, Minnesota, 1979, p.81.

    88. Diederich, F.; Rubin, Y. Angew. Chem. 1992, 104, 1123.

    89. Yin, S.; Maeda, D.; Ishitsuka, M.; Wu, J.; Sato, T. Solid State Ionics 151 (2002) 377.

    91. Ealet, B.; Elyakhou. M.H.; Gillet, E.; Ricci, M. Thin Solid Films 250 (1994) 92.

    92. Benítez, J. In Process Engineering and Design for Air pollution Control; Prentice-Hall: Englewood Cliffs, NJ 1993.

    93. Grzybek, T. Fuel 1990, 69, 604.

    94. Zhu, Z.H.; Radovic, L. R.; Lu, G. Q. Carbon 2000, 38, 451.

    95. Teng, H.; Hsu, L.-Y.; Lai, Y.-C. Environ. Sci. Technol. 2001, 35, 2369.

    96. Hsu, L.-Y.; Teng, H. Appl. Catal. B 2001, 35, 21.

    97. Zhu, Z.; Liu, Z.; Li, S.; Niu, H.; Hu, T.; Liu, T.; Xie, Y. Appl. Catal. B 2000, 26, 25.

    98. 徐禮業,賴育聰,鄧熙聖第19屆觸媒與反應工程研討會 2001, 164.

    99. Tremblay, G.; Vastola, F. J.; Walker, P.L. Carbon 1978, 16, 35.

    100. Linares-Solano, A.; Salinas-Martinez de Lecea, C.; Cazorlaporous-Amoros, D.; Joly, J.P. Energy & Fuel 1990, 4, 467.

    101. Haydar, S.; Moreno-Castilla, C.; Ferro-Garcia, M. A.; Carrasco-Marin, F.; Rivera-Utrilla, J.; Perrard, A.; Joly, J. P. Carbon 2000, 38, 1297.

    102. Mul, G..; Neeft, J.P.A.; Kapteijn, F.; Moulijn, J.A. Carbon 1998, 36, 1269.

    103. Lee, J. K.; Suh, D. J.; Park, S.; Park, D. Fuel 1993, 72, 935.

    104. Teng, H.; Hsu, Y.-F.; Tu, Y.-T. Appl. Catal. B 1999, 20, 145.

    105. Teng, H.; Tu, Y.-T.; Lai, Y.-C.; Lin, C.-C. Carbon 2001, 39, 575.

    106. Satterfield, C. N. Heterogeneous catalysis in practice, 2nd Edn, McGraw-Hill, New York, 1991, p.140.

    107. Glassman, Combustion, 2nd Edn, Academic Press Inc., New York 1987.

    108. Wood, S. C. Chem. Eng. Prog. 1994, 90, 32.

    109. Teng, H.; Suuberg, E. M.; Phys. J. Chem. 1993, 97, 478.

    110. Teng, H.; Suuberg, E. M. Ind. Eng. Chem. Res. 1993, 32, 416.

    111. Watts, H. J. Chem. Soc. Faraday Trans 1958, 54, 93.

    112. Illán-Gómez, M. J., Raymundo-Piñero, E.; Garcia-Gaecia, A.; Linares-Solano, A.; Salinas-Martinez de Lecea, C. Appl. Catal. B. 1999, 20, 267.

    下載圖示 校內:立即公開
    校外:2003-02-13公開
    QR CODE