簡易檢索 / 詳目顯示

研究生: 顏正泰
Yan, Jheng-Tai
論文名稱: 鉑/氧化鎵/氮化鎵氫氣檢測器製作與其特性研究
Fabrication and performance investigation of Pt/Ga2O3/GaN hydrogen sensors
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 72
中文關鍵詞: 氮化鎵氫氣光電化學檢測器
外文關鍵詞: GaN, hydrogen, photoelectrochemical, sensor
相關次數: 點閱:124下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來氮化鎵因具有寬的直接能隙與優異的光電特性等優點,而越來越受到重視,一般可應用於藍紫光發光二極體與高速元件等電子元件中,此外氮化鎵尚可作為一氫氣檢測器,因具有寬的直接能隙與穩定的化學性質,相較於以矽為主的氫氣檢測器,氮化鎵可於高溫、惡劣的環境中工作,然而也由於其穩定之化學性質,使其無法直接使用一般傳統的方法進行氧化,以製作出金屬/氧化物/半導體之氣體檢測器。於本論文中,以光電化學氧化法對氮化鎵直接進行氧化形成氧化鎵,並利用高溫爐對初成長之氧化鎵進行700oC、氧氣氛圍、2小時的熱處理,氧化層經熱處理後,出現-Ga2O3晶相,此氧化層具有穩定之化學性質且可與氫氣反應。最後於此熱處理後之氧化層上蒸鍍鉑金屬做為一催化金屬,製作出鉑/氧化鎵/氮化鎵(金屬/氧化物/半導體)氫氣檢測器,同時並製作一鉑/氮化鎵(金屬/半導體)氫氣檢測器作為比較。
    當氫氣通入於腔體中,氫氣分子受鉑金屬催化分解為氫原子,並滲透到介面處形成偶極降低能障,進而改變元件之電流,相較於一般之金屬/半導體氫氣檢測器,金屬/氧化物/半導體氫氣檢測器之氧化物可於介面處提供更多位置給氫原子,產生更多的偶極造成更大的能障變化,且氧化鎵為一反應式之氧化層,可與氫氣產生反應進而降低薄膜之電阻,於10000 ppm氫氣/空氣混合氣中,鉑/氧化鎵/氮化鎵氫氣檢測器其能障與串聯電阻變化量分別為0.655V與191,而鉑/氮化鎵氫氣檢測器則為0.149V與2,相較之下金屬/氧化物/半導體氫氣檢測器具有更大之響應。最後進行量測並分析鉑/氧化鎵/氮化鎵於不同環境溫度下之穩態響應與暫態反應以探討其物理與化學吸附機制。藉由不同溫度與氫氣濃度下之穩態分析,氫氣吸附於鉑/氧化鎵介面與氫氣吸附於氧化鎵內之焓分別為8.5與7.65 千焦耳/莫爾,由於此氫氣吸附反應為一放熱反應,因此元件隨著工作溫度之上升,其檢測能力有隨之下降趨勢;此外由不同溫度暫態之分析,由阿瑞尼斯方程式可計算出其活化能為1.99千焦耳/莫爾,因此元件可快速反應偵測出環境中氫氣濃度之變化,提早做出預警。

    In the recent years, GaN had attracted more and more attentions due to its direct wide band and superior optoelectronic characteristics. Different kinds of GaN-based light-emitting diodes and high speed devices had been studied. Besides, it could be used as a hydrogen gas sensor. The applications of hydrogen in modern technology include industry fabrication processes, hydrogen fueled cell and vehicles etc.. Due to the requirement of robust gas sensors for use at harsh environments, semiconductorbased hydrogen gas sensors have attracted much attention. However, the Si-based hydrogen sensors could not operated at high temperatures. Based on characteristics of high electron saturation velocity, high breakdown electric field, superior thermal and chemical stability, GaNbased hydrogen sensors have become a potential sensors to improve hydrogensensing performances. However, the GaN was difficult to oxidize directly due to its strong chemical bond. In this study, a photoelectrochemical oxidation was used to grow an oxide layer directly on the GaN layer.
    The Pt/Ga2O3/GaN (metal/reactive insulator/semiconductor) MIStype hydrogen sensors were fabricated in which the Ga2O3 oxide layers were directly grown on GaN layer using a photoelectrochemical oxidation method and then annealed in O2 ambience at 700oC for 2 hours. The Pt/Ga2O3/GaN MIStype hydrogen sensors exhibited high hydrogen sensing ability than the Pt/GaN (metal/semiconductor) MStype hydrogen sensors. When the MIStype hydrogen sensors were exposed to dilute hydrogen ambience, the reactive oxide layer not only helped to increase the number of trapping sites for the hydrogen atoms at the Pt/Ga2O3 interface, but its associated series resistance could also be decreased as well. The barrier height change and series resistance change of MIStype hydrogen sensors exposure to the ambience of 10000 ppm H2/air were 0.655 V and 191, respectively. The corresponding values of the MStype hydrogen sensors were 0.149 V and 2, respectively. Therefore, more hydrogen diploes were performed at the Pt/Ga2O3 interface and resulted in larger barrier lowing.
    An increase in current was observed when the MIStype hydrogen sensors were exposed to a dilute hydrogen ambience due to the changes in barrier height and series resistance. In addition, the physical and chemical hydrogen sensing mechanisms of the MIStype hydrogen sensors were investigated. Based on the steadystate analysis at different operating temperatures, the corresponding enthalpies for hydrogen adsorbed at the interface and also in the oxide layer were 8.5 and 7.65 kJ/mol, respectively. A negative enthalpy indicated that the kinetic reaction was exothermic in force. Therefore, the hydrogen response decreased in response to an increase in operating temperature. Furthermore, based on the kinetic analysis, the activation energy value was 1.99 kJ/mol. The small activation energy value indicated that the rapid hydrogen detection could be achieved with the Pt/Ga2O3/GaN MIStype hydrogen sensors. The experimental results demonstrated that the Ga2O3 layer played an important role in the MIStype hydrogen sensors.

    Abstract (In Chinese) I Abstract (In English) III Chapter 1 1 Introduction 1 1.1 The motivation 1 1.2 Overview of this dissertation 4 Chapter 2 9 Theory 9 2.1 Characteristics of GaN 9 2.2 Schematic of the PEC system 10 2.3 Schottky contact 13 2.4 Hydrogen sensing mechanism 16 Chapter 3 23 Experimental Procedure 23 3.1 Experimental 23 3.2 Gas detection system and Measurement 26 Chapter 4 30 Hydrogen response at room temperature 30 4.1 Hydrogen response of the MS-type hydrogen sensors 30 4.2 Hydrogen response of the MIS-type hydrogen sensors 33 4.3 Analysis of the hydrogen sensing processes 35 4.4 The contribution and effect of the reactive insulator 38 4.5 Transient response of hydrogen sensors 44 Chapter 5 48 Thermodynamic and kinetic analysis of hydrogen sensing at various temperatures 48 5.1 Response at various hydrogen ambiences and temperatures 48 5.2 Analysis of the steady state 53 5.2.1 Hydrogen sensing mechanisms 53 5.2.2 Analysis of hydrogen atoms at the interface 56 5.2.3 Analysis of hydrogen atoms in the oxide layer 60 5.3 Analysis of transient state 63 Chapter 6 70 Conclusions 70 Chapter 7 72 Future work 72

    Chapter 1
    [1] P. Chattopadhyay, A.N. Daw, On the current transport mechanism in a metal-insulator semiconductor (MIS) diode, Solid State Electron. 29, 555-560 (1986).
    [2] J.T. Yan, C.T. Lee, Improved detection sensitivity of Pt/-Ga2O3/GaN hydrogen sensor diode, Sens. Actuator B 143, 192-197 (2009).
    [3] J. Schalwig, G. Muller, M. Eickhoff, O. Ambacher, M. Stutzmann, Group III-nitride-based gas sensors for combustion monitoring, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 93, 207-214 (2002).
    [4] C.T. Lee, J.T. Yan, Sensing mechanisms of Pt/Ga2O3/GaN hydrogen sensor diodes, Sens. Actuator B 147, 723-729 (2010).
    [5] C.T. Lee, J.T. Yan, B., Investigation of a metal-insulator-semiconductor Pt/mixed Al2O3 and Ga2O3 insulator hydrogen sensor, J. Electrocehm. Soc. 157, J281-J28 (2010).
    [6] S. Petrescu, C. Petre, M. Costea, O. Malancioiu, N. Boriaru, A. Dobrovicescu, M. Feidt, C. Harman, A methodology of computation, design and optimization of solar stirling power plant using hydrogen/oxygen fuel cells, Energy 35, 729-739 (2010).
    [7] I. Cumalioglu, A. Ertas, Y. Ma and T. Maxwell, State of the art: Hydrogen storage, J. Fuel Cell Sci. Technol. 5, 034001-1-034001-10 (2008).
    [8] L.G. Petersson, H.M. Dannetun, J. Fogelberg, I. Lundstrom, Hydrogen adsorption states at the external and internal palladium surfaces of a palladium-silicon dioxide-silicon structure, J. Appl. Phys. 58, 404-413 (1985).
    [9] I. Lundstrom, T. Distefano, Influence of hydrogen on Pt-SiO2-Si structures, Solid State Commun. 19, 871-875 (1976).
    [10] I. Lundstrom, T. Distefano, Hydrogen induced interfacial polarization at Pd-SiO2 interfaces, Surf. Sci. 59, 23-32 (1976).
    [11] X. Yu, C. Li, Z.N. Low, J. Lin, T.J. Anderson, H.T. Wang, F. Ren, Y.L. Wang, C.Y. Chang, S.J. Pearton, C.H. Hsu, A. Osinsky, A. Dabiran, P. Chow, C. Balaban, J. Painter, Wireless hydrogen sensor network using AlGaN/GaN high electron mobility transistor differential diode sensors, Sens. Actuator B 135, 188-194 (2008).
    [12] T. Higuchi, S. Nakagomi, Y. Kokubun, Field effect hydrogen sensor device with simple structure based on GaN, Sens. Actuators B 140, 79-85 (2009).
    [13] L. Uneus, S. Nakagomi, M. Linnarsson, M.S. Janson, B.G. Svensson, R. Yakimova, M. Syvajarvi, A. Henry, E. Janzen, L.G. Ekedahl, I. Lunstrom, A.L. Spetz, The effect of hydrogen diffusion in p- and n-type SiC Schottky diodes at high temperatures, Mater. Sci. Forum. 389, 1419-1422 (2002).
    [14] W.M. Tang, C.H. Leung, P.T. Lai, Improved sensing characteristics of MISiC Schottky-diode hydrogen sensor by using HfO2 as gate insulator, Microelectronics Reliability 48, 1780-1785 (2008).
    [15] C.T. Lee, H.Y. Lee, H.W. Chen, GaN MOS device using SiO2-Ga2O3 insulator grown by photoelectrochemical oxidation method, IEEE Electron Device Lett. 24, 54-56 (2003).
    [16] L.H. Huang, S.H. Yeh, C.T. Lee, H.P. Tang, J. Bardwell, J.B. Webb, AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors using oxide insulator grown by photoelectrochemical oxidation method, IEEE Electron Device Lett. 29, 284-286 (2008).
    [17] Y.L. Chiou, L.H. Huang, C.T. Lee, GaN-based p-type metal-oxide-semiconductor devices with a gate oxide layer grown by a bias-assisted photoelectrochemical oxidation method, Semicond. Sci. Technol. 25, 045020-1-045020-5 (2010).
    [18] Y.L. Chiou, L.H. Huang, C.T. Lee, Photoelectrochemical function in gate-recessed AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors, IEEE Electron Device Lett. 31, 183-185 (2010).
    [19] C.H. Yen, C.W. Hung, H.I. Chen, T.H. Tsai, T.P. Chen, L.Y. Chen, K.Y. Chu, W.C. Liu, On the hydrogen sensing behaviors of an InAlAs-based Schottky diode with a thin Pt catalytic metal, Jpn. J. Appl. Phys. 47, 2862-2864 (2008).
    [20] A. Trinchi, W. Wlodarski, Y.X. Li, Hydrogen sensitive Ga2O3 Schottky diode sensor based on SiC, Sens. Actuator B 100, 94-98 (2004).

    Chapter 2
    [1] T.C. Wen, S.J. Chang, C.T. Lee, W.C. Lai, J.K. Sheu, Nitride-based LEDs with modulation-doped Al0.12Ga0.88N-GaN superlattice structures, IEEE Trans. Electron Devices 51, 1743-1746 (2004).
    [2] C.F. Shen, S.J. Chang, T.K. Ko, C.T. Kuo, S.C. Shei, W.S. Chen, C.T. Lee, C.S. Chang, Y.Z. Chiou, Nitride-based light emitting diodes with textured sidewalls and pillar waveguides, IEEE Photon. Technol. Lett. 18, 2517-2519 (2006).
    [3] C.T. Lee, Y.H. Chou, J.T. Yan, Light enhancement of Al nanoclusters embedded in Al-doped ZnO films of GaN-based light-emitting diodes, J. Vac. Sci. Technol. B 27, 1901-1903 (2009).
    [4] Y.P. Hsu, S.J. Chang, Y.K. Su, J.K. Sheu, C.T. Lee, T.C. Wen, L.W. Wu, C.H. Kuo, C.S. Chang, S.C. Shei, Lateral epitaxial patterned sapphire InGaN/GaN MQW LEDs, J. Cryst. Growth 261, 466-470 (2004).
    [5] R.W. Chuang, R.X. Wu, L.W. Lai, C.T. Lee, ZnO-on-GaN heterojunction light-emitting diode grown by vapor cooling condensation technique, Appl. Phys. Lett. 91, 23113-1-23113-3 (2007).
    [6] P.S. Chen, C.S. Lee, J.T. Yan, C.T. Lee, Performance improvement and mechanism of chlorine-treated InGaN-GaN ligth-emitting diodes, Electrochem. Soli State Lett. 10, H165-H167 (2007).
    [7] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, K. Chocho, Violet InGaN/GaN/AlGaN-based laser diodes with an output power of 420 mW, Jpn. J. Appl. Phys. Lett. 37, L627-L629 (1998).
    [8] Q.X. Yu, B. Xu, Q.H. Wu, Y. Liao, G.Z. Wang, R.C. Fang, H.Y. Lee, C.T. Lee, Optical properties of ZnO/GaN heterostructure and its near-ultraviolet light-emitting diode, Appl. Phys. Lett. 83, 4713-4715 (2003).
    [9] J.T. Yan, C.H. Chen, S.F. Yen, C.T. Lee, Ultraviolet ZnO nanorod/P-GaN-heterostructured light-emitting diodes, IEEE Photon. Technol. Lett. 22, 146-148 (2010).
    [10] H.Y. Lee, Y.H. Chou, C.T. Lee, W.Y. Yeh, M.T. Chu, Mechanisms of lighting enhancement of Al nanoclusters-embedded Al-doped ZnO film in GaN-based light-emitting diodes, J. Appl. Phys. 107, 014503-1-014503-5 (2010).
    [11] S. Dalui, C.C. Lin, H.Y. Lee, S.F. Yen, Y.J. Lee, C.T. Lee, Electroluminescence from solution grown n-ZnO nanorod/p-GaN-heterostructured light emitting diodes, J. Electrochem. Soc. 157, H516-H518 (2010).
    [12] L.H. Huang, S.H. Yeh, C.T. Lee, H.P. Tang, J. Bardwell, J.B. Webb, AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors using oxide insulator grown by photoelectrochemical oxidation method, IEEE Electron Device Lett. 29, 284-286 (2008).
    [13] L.H. Huang, C.T. Lee, Investigation and analysis of AlGaN MOS devices with an oxidized layer grown using the photoelectrochemical oxidation method, J. Electrochem. Soc. 154, H862-H866 (2007).
    [14] Y.L. Chiou, L.H. Huang, C.T. Lee, Photoelectrochemical function in gate-recessed AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors, IEEE Electron Device Lett. 31, 183-185 (2010).
    [15] C.T. Lee, H.Y. Lee, H.W. Chen, GaN MOS device using SiO2-Ga2O3 insulator grown by photoelectrochemical oxidation method, IEEE Electron Device Lett. 24, 54-56 (2003).
    [16] J.H. Werner, H.H. Guttler, Barrier inhomogeneities at Schottky contacts, J. Appl. Phys. 69, 1522-1533 (1991).
    [17] J. Tersoff, Schottky-barrier heights and the continuum of gap states, Phys. Rev. Lett. 52, 465-468 (1984).
    [18] C.T. Lee, J.T. Yan, Sensing mechanisms of Pt/Ga2O3/GaN hydrogen sensor diodes, Sens. Avtuators B 147, 723-729 (2010).
    [19] J.T. Yan, C.T. Lee, Improved detection sensitivity of Pt/Ga2O3/GaN hydrogen sensor diode, Sens. Actuators B 143, 192-197 (2009).
    [20] C.T. Lee, J.T. Yan, Investigation of a metal-insulator-semiconductor Pt/mixed Al2O3 and Ga2O3 insulator/AlGaN hydrogen sensor, J. Electrochem. Soc. 157, J281-J284 (2010).

    Chapter 3
    [1] C.T. Lee, H.Y. Lee, H.W. Chen, GaN MOS device using SiO2-Ga2O3 insulator grown by photoelectrochemical oxidation method, IEEE Electron Device Lett. 24, 54-56 (2003).
    [2] C.T. Lee, H.W. Chen, F.T. Hwang, H.Y. Lee, Investigation of Ga oxide films directly grown on n-type GaN by photoelectrochemical oxidation using He-Cd laser, J. Electron. Mater. 34, 282-286 (2005).
    [3] L.H. Huang, S.H. Yeh, C.T. Lee, H.P. Tang, J. Bardwell, J.B. Webb, AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors using oxide insulator grown by photoelectrochemical oxidation method, IEEE Electron Device Lett. 29, 284-286 (2008).
    [4] L.H. Huang, C.T. Lee, Investigation and analysis of AlGaN MOS devices with an oxidized layer grown using the photoelectrochemical oxidation method, J. Electrochem. Soc. 154, H862-H866 (2007).

    Chapter 4
    [1] J.T. Yan, C.T. Lee, Improved detection sensitivity of Pt/-Ga2O3/GaN hydrogen sensor diode, Sens. Actuator B 143, 192-197 (2009).
    [2] C.T. Lee, J.T. Yan, Sensing mechanisms of Pt/Ga2O3/GaN hydrogen sensor diodes, Sens. Actuator B 147, 723-729 (2010).
    [3] C.T. Lee, J.T. Yan, Investigation of a metal-insulator- semiconductor Pt/mixed Al2O3 and Ga2O3 insulator hydrogen sensor, J. Electrocehm. Soc. 157, J281-J284 (2010).
    [4] J.W. Medlin, A.E. Lutz, R. Bastasz, A.H. McDaniel, The response of palladium metalinsulatorsemiconductor devices to hydrogenoxygen mixtures: comparisons between kinetic models and experiment, Sens. Actuators B 96, 290297 (2003).
    [5] D. R. Alfonso, Comparative studies of CO and H2O interactions with Pd(111) surface: A theoretical study of poisoning, Appl. Phys. Lett. 88, 051908-1051908-3 (2006).

    Chapter 5
    [1] J.T. Yan, C.T. Lee, Improved detection sensitivity of Pt/-Ga2O3/GaN hydrogen sensor diode, Sens. Actuator B 143, 192-197 (2009).
    [2] C.T. Lee, J.T. Yan, Sensing mechanisms of Pt/Ga2O3/GaN hydrogen sensor diodes, Sens. Actuator B 147, 723-729 (2010).
    [3] C.T. Lee, J.T. Yan, B., Investigation of a metal-insulator- semiconductor Pt/mixed Al2O3 and Ga2O3 insulator hydrogen sensor, J. Electrocehm. Soc. 157,J281-J284 (2010).
    [4] W. Jochum, S. Penner, K. Fottinger, R. Kramer, G. Rupprechter, B. Klotzer, Hydrogen on polycrystalline Ga2O3: Surface chemisorption, defect formation, and reactivity, J. Catal. 256, 268277 (2008).
    [5] W.P. Kang, Y. Gurbuz, Comparison and analysis of Pd and PtGaAs Schottky diodes for hydrogen detection, J. Appl. Phys. 75, 81758181 (1994).
    [6] I. Lundstrom, Hydrogen sensitive mosstructures part 1: principles and applications, Sens. Actuators B 1, 403426 (1981).
    [7] I. Lundstrom, Hydrogen sensitive mos-structures part 2: characterization, Sens. Actuators B 2, 105138 (1981).
    [8] R.J. Silbey, R.A. Alberty, Physical Chemistry, 3rd ed., Wiely, New York (2001).
    [9] M. Pasturel, R.J. Wijngaarden, W. Lohstroh, H. Schreuders, M. Slaman, B. Dam, R. Griessen, Influence of the chemical potential on the hydrogen sorption kinetics of MgNi/TM/Pd (TMtransition metal) trilayers, Chem. Mater. 19, 624633 (2007).
    [10] H.I. Chen, Y.I. Chou, C.K. Hsiung, Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated PdInP Schottky diodes, Sens. Actuators B 92, 616 (2003).

    無法下載圖示 校內:2015-08-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE