簡易檢索 / 詳目顯示

研究生: 鄭博元
Cheng, Po-Yuan
論文名稱: 含光學活性脂環側鏈高分子在化學增幅型 光阻劑之應用研究
Applications of Chiral Polymers Containing Alicyclic Side Group on the Chemical Amplified Photoresists
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 95
中文關鍵詞: 微影製程光阻劑化學增幅半導體高分子
外文關鍵詞: photoresist, microlithography, polymers, chemical amplified
相關次數: 點閱:77下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究利用壓克力系列單體甲基丙烯酸(Methyl acrylate acid,
    MAA)與(+)-Borneol、(-)-Borneol、Decahydro-2-naphthol、Cholesterol利用酯化反應合成側鏈含不同脂肪環之單體,以探討對於阻劑在抗蝕刻能力上的表現,之後與具有酸不穩定基團之甲基丙烯酸三級丁酯(t-BMA)及其他單體以所設定之比例進行共聚合反應以製備阻劑中之高分子主體結構,聚合過程中並加入鏈轉移劑正丁基硫醇(n-Butyl mercaptan)控制相對分子量於10000以下以符合光阻劑特性之需求。研究當中所合成兩系列不同共聚比例之高分子經由紫外光光譜儀測試得知其最大主吸收波長約在230nm左右,故適用於目前的半導體IC製程ArF (193nm)光學微影技術。將所合成之共聚高分子與光酸配製為化學增幅正型光阻劑,藉由微影程序測試各製程參數,探討系列中光阻劑之特性表現。其結果顯示,系列中的阻劑藉由壓克力酸導入,可提升整體光阻劑對於感度及顯影時溶解能力的表現,此系列約在40mJ/cm2以內皆可達到不錯的解像能力,另外在導入具立體障礙性的基團後則可提升阻劑的抗溶解能力進而提升阻劑的對比。在抗蝕刻測試方面,由所導入具有不同立體障礙性的脂環族單體發現,具有高碳氫比之cholesteryl及bornyl基團,對於阻劑在抗乾式蝕刻能力上能具有較不錯的表現。最後由此系列製程參數較佳之阻劑經由實際測試後所得之線路,藉由SEM觀察其解析度發現,本研究光阻劑之最佳解像力可達1μm。

    Abstract
    To investigate the effect of steric pendant alicyclic groups on the photoresist, a series of acrylic polymers with pendant chiral bornyl, decahydro-2-naphthyl, and cholesteryl groups was synthesized. Acid labile group of t-butyl was introduced into the polymers and was used as positive tone photoresist. The molecular weight of the polymers was made lower than 10,000. The thermal stability of the copolymers was studied using a thermogravimetric analyzer. The main absorption of the synthesized polymers was located around 230nm. Accordingly, the polymer matrixes were useful in the field of 193 nm deep UV photoresist. The synthesized polymers were used to prepare UV photoresist and their specific effect on the physical properties of photoresists was investigated. It was found that the steric hindered bornyl and cholesteryl group of the polymers raised the thermal stability, contrast and etching resistance of the photoresist. The optimal sensitivity of 26 mJ/cm2 and 1μm resolution of the photoresist was achieved. The resolution of real patents was studied using SEM technique. The etching resistance of the prepared photoresists containing synthesized copolymers was also studied.

    目錄 摘要...................................................................................................................I Abstract............................................................................................................II 目錄................................................................................................................III 表目錄............................................................................................................VI 圖目錄...........................................................................................................VII Scheme...........................................................................................................XI 符號表...........................................................................................................XII 第一章、緒論 1-1 前言.....................................................................................................1 1-2 光阻劑(感光性高分子).......................................................................2 1-3 半導體微影製程發展……..................................................................2 1-4 光阻劑的應用及發展……..................................................................5 1-5 研究動機………………….........................................................6 第二章、原理與文獻回顧 2-1 游離基連鎖聚合反應.........................................................................7 2-1-1 熱分解起始劑............................................................................7 2-1-2 鏈轉移反應................................................................................8 2-2 半導體製.............................................................................................9 2-3 微影製程......................................................................................10 2-3-1 晶圓表面清潔........................................................................10 2-3-2 塗底(Priming)........................................................................11 2-3-3 光阻塗佈(Resist coating)........................................................12 2-3-4 軟烤(Prebaking).......................................................................13 2-3-5 曝光(Exposure)…....................................................................14 2-3-6 曝後烤(Post exposure baking, PEB).......................................19 2-3-7 顯影(Development).................................................................19 2-3-8 硬烤(Hard baking)...................................................................20 2-4 化學增幅型光阻劑...........................................................................20 2-4-1 何謂光阻劑..............................................................................20 2-4-2 化學增幅型(Chemical amplification).....................................21 2-4-3 193奈米(ArF)光阻.................................................................25 2-5 光阻特性...........................................................................................26 2-5-1 感度(Sensitivity)......................................................................27 2-5-2 對比(Contrast).........................................................................28 2-5-3 解析度(Resolution)..................................................................28 2-5-4 熱穩定性(Thermal stability)...................................................29 2-5-5 接著性(Adhesion)....................................................................29 2-5-6 抗蝕刻性(Reactive ion etching resistance).............................30 第三章、實驗 3-1 藥品...................................................................................................31 3-2 儀器...................................................................................................33 3-3 合成與聚合反應方法.......................................................................34 3-3-1 試藥前處理..............................................................................34 3-3-2 光阻材料製備......................................................................34 3-3-3 單體與共聚合物的分析鑑定..................................................40 3-3-4 微影製程..................................................................................42 第四章、結果與討論 4-1 單體之合成及分析...........................................................................45 4-2 聚合物的合成...................................................................................47 4-2-1 含系列一單體之共聚物..........................................................47 4-2-2 含系列二單體之共聚物..........................................................49 4-3 微影製程性質探討...........................................................................51 4-3-1阻劑對於UV光特性吸收之探討.............................................51 4-3-2光阻劑光酸及溶劑之選取........................................................52 4-3-3 光阻劑旋轉塗佈轉速之決定..................................................53 4-3-4 軟烤溫度及時間之測定..........................................................53 4-3-5 曝後烤條件之決定..................................................................54 4-3-6 顯影濃度及時間參數之決定..................................................57 4-3-7 光阻劑特性曲線分析..............................................................59 4-3-8 光阻劑之顯像分析..................................................................61 4-4 耐蝕刻性質探討...............................................................................62 第五章 結論..................................................................................................89 第六章 參考文獻...........................................................................................90 表目錄 Table 2-1美國無線電公司清潔法 ( RCA Cleaning )...................................11 Table 4-1 Specific rotation of monomers........................................................47 Table 4-2 Results of polymerization of monomers ........................................49 Table 4-3 Results of polymerization of monomers.........................................51 Table 4-4 Film thickness of photoresists.........................................................53 Table 4-5 Results of experimental conditions for photoresists......................58 Table 4-6 Sensitivity and contrast of photoresists .......................................60 Table 4-7 Sensitivity and contrast of photoresists .........................................61 Table 4-8 Etching resistance of resists………………………………..…......63 圖目錄 Fig. 1-1 半導體科技藍圖................................................................................3 Fig. 1-2 微影發展趨勢....................................................................................4 Fig. 1-3 ArF光阻開發所必須考慮到之各項因子..........................................5 Fig. 2-1 積體電路的製造流程圖....................................................................9 Fig. 2-2 底材HMDS的作用.........................................................................12 Fig. 2-3 旋轉塗佈示意圖..............................................................................13 Fig. 2-4 曝光法與相對應之光繞射現象......................................................16 Fig. 2-5 三種曝光方式的示意圖..................................................................17 Fig. 2-6 光學相關波長範圍分類參考圖......................................................18 Fig. 2-7 正、負型光阻劑示意圖..................................................................21 Fig. 2-8 光酸催化t-BOC去保護基反應機構.........................................22 Fig. 2-9 Poly(4-hydroxystyrene)的酸催化去保護反應..............................23 Fig. 2-10 酸催化解聚合反應........................................................................23 Fig. 2-11 酸催化交聯反應............................................................................24 Fig. 2-12 酸催化極性改變............................................................................24 Fig. 2-13 化學增幅型193nm光阻劑分類...................................................26 Fig. 2-14 感光性高分子的特性曲線示意圖................................................27 Fig. 2-15 光阻的感度與對比(a)正型, (b)負型…........................................28 Fig. 3-1 實驗裝置圖......................................................................................40 Fig. 4-1 FT-IR spectrum of (+)-borneol……………………........................64 Fig. 4-2 1H-NMR spectrum of (+)-borneol….................................................64 Fig. 4-3 FT-IR spectrum of (+)-bornyl methacrylate……............................65 Fig. 4-4 1H-NMR spectrum of (+)-bornyl methacrylate……….....................65 Fig. 4-5 1H-NMR spectrum of (-)-bornyl methacrylate. ................................66 Fig. 4-6 FT-IR spectrum of decahydro-2-naphthyl methacrylate....................66 Fig. 4-7 1H-NMR spectrum of decahydro-2-naphthyl methacrylate...............67 Fig. 4-8 FT-IR spectrum of cholesteryl acrylate……………………………67 Fig. 4-9 DSC thermograms of cholesteryl acrylate…………………………68 Fig. 4-10 1H-NMR spectrum of cholesteryl acrylate………………...............68 Fig. 4-11 1H-NMR spectrum of poly(t-BMA-co-MMA-co-MA)…….........69 Fig. 4-12 1H-NMR spectrum of poly(t-BMA-co-MMA-co-MAA)................69 Fig. 4-13 1H-NMR spectrum of poly(t-BMA-co-(-)BMA-co-MMA-co-MAA) ….…………………………………………………………………70 Fig. 4-14 Thermogravimeteric curves determined by TGA(20℃/min in nitrogen) : homopolymer poly(t-BMA)………………...............70 Fig. 4-15 Thermogravimeteric curves determined by TGA(20℃/min in nitrogen) : (a) polymer 1;(b) polymer 2…..…………………… 71 Fig. 4-16 Thermogravimeteric curves determined by TGA(20℃/min in nitrogen) : (c) polymer 3;(d) polymer 4. ....................................71 Fig. 4-17 Thermogravimeteric curves determined by TGA(20℃/min in nitrogen) : (e) polymer 5;(f) polymer 6. .....................................72 Fig. 4-18 Thermogravimeteric curves determined by TGA(20℃/min in nitrogen) : (a) polymer 10;(b) polymer 12;(c) polymer 7 ....................................................................................................72 Fig. 4-19 Thermogravimeteric curves determined by TGA(20℃/min in nitrogen) : (a) polymer 9;(b) polymer 8;(c) polymer 11…….73 Fig. 4-20 UV spectrum of copolymers (a) polymer 8 and (b) polymer 9.......73 Fig. 4-21 UV spectrum of photoacid generator ..............................................74 Fig. 4-22 Dependence of film thickness on spin coating speed for PR7 (step 1 speed = 500 rpm)…………………………………………...........74 Fig. 4-23 Dependence of film thickness on spin coating speed for PR7 (step 1 speed = 500 rpm)………………………………….........................75 Fig. 4-24 Dependence of solvent content on prebaking time at different temperature for PR1……………………………………………....75 Fig. 4-25 Dependence of solvent content on prebaking time at different temperature for PR7…………………………………..................76 Fig. 4-26 FT-IR spectrum of PR1 before and after prebaking at 100℃……..76 Fig. 4-27 FT-IR spectrum of PR7 before and after prebaking at 100℃……..77 Fig. 4-28 Effect of PEB temperature on normalized deprotection degree......77 Fig. 4-29 FT-IR spectrum of PR4 at 120 oC with various PEB times…........78 Fig. 4-30 Effect of PEB temperature on normalized deprotection degree......78 Fig. 4-31 FT-IR spectrum of PR10 at 120 oC with various PEB times….....79 Fig. 4-32 Comparison of TGA thermograms of PR12 before and after UV irradiation.....................................................................79 Fig. 4-33 Comparison of TGA thermograms of PR10 before and after UV irradiation...................................................................80 Fig. 4-34 Comparison of TGA thermograms of PR7 before and after UV irradiation...................................................................80 Fig. 4-35 Dependence of normalized PR1 film thickness on developing time after UV exposure and PEB in 0.625% TMAH..............................81 Fig. 4-36 Dependence of normalized PR5 film thickness on developing time after UV exposure and PEB in 0.625% TMAH…………………..81 Fig. 4-37 Dependence of normalized PR7 film thickness on developing time before UV exposure in various developers.....................................82 Fig. 4-38 Dependence of normalized PR7 film thickness on developing time after UV exposure and PEB in 0.625% TMAH..…………………82 Fig. 4-39 Dependence of normalized PR10 film thickness on developing time before UV exposure in various developers...................................83 Fig. 4-40 Dependence of normalized PR10 film thickness on developing time after UV exposure and PEB in 0.625% TMAH .............................83 Fig. 4-41 Exposure characteristic curves of PR1、PR2、PR3 and PR5.........84 Fig. 4-42 Exposure characteristic curve of PR7、PR10 and PR12..................84 Fig. 4-43 Exposure characteristic curve of PR7、PR8、PR9、PR10、PR11 and PR12...........................................................................................85 Fig. 4-44 Exposure characteristic curve of PR13............................................85 Fig. 4-45 SEM photographs of PR10 resist patterns………...........................86 Fig. 4-46 SEM photographs of PR12 resist patterns.......................................87 Fig. 4-47 Etching rate of prepared photoresists normalized to PS…………..88 Scheme Scheme 2-1 游離基連鎖聚合反應.................................................................7 Scheme 2-2 AIBN熱分解反應........................................................................8 Scheme 2-3 鏈轉移反應.................................................................................8 Scheme 3-1 Synthesis of (+)-borneol............................................................35 Scheme 3-2 Synthesis of Synthesis of (+)-bornyl methacrylate....................36 Scheme 3-3 Synthesis of (-)-bornyl methacrylate…………..........................36 Scheme 3-4 Synthesis of decahydro-2-naphthyl methacrylate……...............37 Scheme 3-5 Synthesis of cholesterol acrylate...............................................37 Scheme 3-6 Preparation of various acid labile copolymers..........................38 Scheme 3-7 Preparation of various acid labile copolymers..........................39 Scheme 4-1 Acid catalyzed degradation of tert-butyl methacrylate. .............55

    參考文獻

    1. http://www.itrs.net/Common/2005ITRS/Litho2005.pdf.
    2. 廖明吉著,奈米通訊,第五卷,第四期,28-32頁,民87年。
    3. 張豐志 編著,應用高分子手冊,五南圖書出版公司,民92年
    4. M. Rothschild, A. R. Forte, R. R. Kunz, S. C. Palmateer and J. H. C.
    Sedlacek. IBM J. Res. Develop., 1997, 41, 49.
    5. H. Ito, IBM J. Res. Develop. 1997, 41, 69-80.
    6. M. Takahashi, S. Takechi, Y. Kaimoto, I. Hanyu, N. Abe, and K. Nozaki,Proc, Proc. SPIE, 1995, 2438, 442.
    7. J. C. Jung, C. K. Bok and K. H. Baik, Proc. SPIE, 1998, 3333, 11.
    8. G. Odian, Principles of polymerization, John Wiley & Sons, New York, 1991, 467.
    9. 莊達人著,VLSI製造技術,高立出版社,1996。
    10. 蕭宏著,半導體製程技術導論,歐亞書局有限公司,2001。
    11. S. Nonogaki, T. Ueno, and T. Ito, Microlithography Fundamentals in Semiconductor Devices and Fabrication Technology, Marcel Dekker, New York, 1998.
    12. B. Bendr, J. Krlicek, and J. Zachoval, Resists in Microlithography and Printing, Elsevier, Amsterdam, 1993.
    13. C. P. Wong, Polymers for Electronic and Photonic Applications,
    Academic Press, Boston, 1993.
    14. 龍文安著,積體電路微影製程,高立出版社,1998。
    15. L. F. Thompson, C. G. Willson, and M. J. Bowden, Introduction to
    Microlithography, ACS, Washington, 1983.
    16. 永松元太郎著,劉瑞祥編譯,感光性高分子,復文書局,1998。
    17. H. Ito, C. G. Willson, J. M. J. Frechet, M. J. Fareall, and E. Eichler,
    Macromolecules, 1983, 23, 509.
    18. J. V. Crivello, Polym. Eng. Sci., 1983, 23, 953.
    19. H. Ito, J. Polym. Sci. Polym. Chem., 1986, 24, 2971.
    20. H. Ito, and C. G. Willson, ACS Symp. Ser., 1983, 242, 11.
    21. M. Morata, T. Takahashi, and M. Koshiba, Proc. SPIE, 1990, 1262, 8.
    22. S. A. M. Hesp, N. Hayashi, and T. Ueno, J. Appl. Polym. Sci., 1992, 42, 877.
    23. R. Schwalm, H. Binder, and T. Fisher, Proc. SPIE, 1994, 2195, 2.
    24. H. Ito and C. G. Willson, Polym. Eng. Sci., 1983, 23, 1012.
    25. J. M. J. Frchet, F. Bounchard, and F. Houlihan, ACS Polym. Mater. Sci. Eng., 1985, 53, 263.
    26. W. E. Feely, J. C. Imhof, and C. M. Stein, Polym. Eng. Sci., 1986, 26, 1101.
    27. J. M. Havard, S. Y. Shim, and J. M. J. Frchet, Chem. Mater., 1999, 11, 719.
    28. K. J. Stewart, M. Hatzakis, and J. M. Shaw, J. Vac. Sci. Technol. 1989, B7, 1734.
    29. U. Okoroanyanwu, J. Byers, T. Shimokawa, and C. G. Willson, Chem. Mater., 1998, 10, 3328.
    30. J. B. Kim, J. J. Lee and J. S. Kang, Polymer, 2000, 41, 6939
    31. J. B. Kim, H. J. Yun, Y. G. Kwon, and B. W. Lee, Polymer, 2000, 41, 8035
    32. J. H. Lee, K. Duk Ahn, and Iwhan Cho, Polymer, 2001, 42, 1757
    33. R. Sooriyakumaran, H. Ito, and E. A. Mash, Proc. SPIE, 1991, 1466, 419.
    34. F. M. Houlihan, T. I. Wallow, O. Nalamasu, and E. Reichmanis, Macromolecules, 1997, 30, 6517.
    35. U. Okoroanyanwu, J. Byers, T. Shimokawa, and C. G. Willson, Chem. Mater., 1998, 10, 3328.
    36. H. W. Kim, D. W. Jung, S. Lee, S. J. Choi, S. G. Woo, R. J. Kavanagh, G. G. Barclay, R. F. Blacksmith, D. Kang, G. Pohlers, J. F. Cameron, J. Mattia, S. Caporale, T. Penniman, L. A. Joesten, and J. W. Thackeray, Proc. SPIE, 2001, 4345, 776.
    37. K. K. Lee, J. C. Jung, and M. S. John, Polymer, 1998, 39, 18.
    38. J. C. Jung, C. K. Bok, and K. H. Baik, Proc. SPIE, 1998, 3333, 11.
    39. S. C. Fu, K. H. Hsieh, and L. A. Wang, Proc. SPIE, 2001, 4345, 751.
    40. S. J. Choi, Y. J. Choi, Y. S. Kim, S. D. Kim, D. B. Kim, J. H. Kim, C. W. Koh, G. Lee, J. C. Jung, and K. H. Baik, Proc. SPIE, 2001, 4345, 94.
    41. H. W. Kim, S. J. Choi, D. W. Jung, S. Lee, S. H. Lee, Y. Kang, S. G. Woo, J. T. Moon, R. J. Kavanagh, G. G. Barclay, G. W. Orsula, J. Mattia, S. Caporale, T. G. Adams, T. Tanaka, and D. Kang, Proc. SPIE, 2001, 4345, 119.
    42. M. D. Rahman, D. S. Mckenzie, J. B. Bae, T. Kudo, W. K. Kim, M. Padmanaban, and R. R. Dammel, Proc. SPIE, 2001, 4345, 159.
    43. T. Kajita, Y. Nishimura, M. Yamamoto, H. Ishii, A. Soyano, A. kataoka, M. Slezak, M. Shimizu, P. R. Varanasi, G. Jordhamo, M. C. Lawson, R. Chen, W. R. Brunsvold, W. Li, R. D. Allen, H. Ito, H. D. Truong, and T. I. Wallow, Proc. SPIE, 2001, 4345, 712.
    44. H. U. Seo, S. H. Jin, S. J. Choi, Y. S. Gal, K. T. Lim, J. Appl. Polym. Sci.,2004, 92, 165.
    45. 蔡福人著,“含菠酯基光學活性高分子之合成及其物性探討與其在光學分割之應用研究”,國立成功大學博士論文,2000。
    46. 薛敬和著,高分子化學實驗法,高立出版社,1997。
    47. H. Fukuda, J. Photopolym. Sci. Technol., 2002, 15, 389.
    48. J. Brandrup and E. H. Immergut, Polymer Handbook, John Wiley & Sons, New York, 1999.
    49. R. D. Allen, G. M. Wallraff, D. C. Hofer, and R. R. Kunz, IBM J. Res. Develop., 1997, 41, 95.
    50. S. Yamada, T. Mrozek, T. Rager, J. Owens, J. Rangel, and C. G. Willson, Macromolecules, 2004, 37, 377
    51. J. L. Dektar, and N. P. Hacker, J. Am. Chem. Soc.,1990,112,6004
    52. A. Sekiguchi, C. A. Mack, M. Isono, and T. Matsuzawa, Proc. SPIE, 1999, 3678, 985.
    53. R. A. Ferguson, J. M. Hutchinson, C. A. Spence, and A. R. Neureuther, J. Vac. Sci. Technol. B., 1990, 8, 1423.
    54. M. Yamana, T. Itani, H. Yoshino, S. Hashimoto, H. Tanabe, and K. Kasama, Proc. SPIE, 1998, 3333, 33.
    55. K. Sugita, Progress in Organic Coatings, 1997, 31, 87.
    56. S. H. Hwang and J. C. Jung, Polym. Int., 1999, 48, 851.
    57. S. T. Kim, J. B. Kim, C. M. Chung, and K. D. Ahn, J. Appl. Polym. Sci., 1997, 66, 2507.
    58. R. R. Kunz, S. C. Palmateer, A. R. Forte, R. D. Allen, G. M. Wallraff, R. A. Dipietro, and D. C. Hofer, Proc. SPIE, 1996, 2724, 365.
    59. H. W. Kim, D. W. Jung, S. Lee, S. J. Choi, S. G. Woo,Proc.SPIE,
    2001, 4345, 777.
    60. Y. Uetani, H. Fujishima, Proc.SPIE, 2000, 3999, 974.
    61. J. B. Kim, J. Y. Kim, and M. H. Jung, Polymer, 1998, 40, 273.
    62. S. C. Fu, K. H. Hsieh, and L. A. Wang, J. Polym. Res., 1999, 6, 2.
    63. 施仁傑著,“壓克力系脂環族共聚物之合成及其在光酸增幅型光阻
    劑之應用研究”,國立成功大學博士論文,2001。
    64. 曾伯逸著,“含Ketal基化學增幅型光阻劑之合成及特性研究”,國立成功大學碩士論文,2002。
    65. 曾俊杰著,“環狀脂環族高分子之合成及其在化學增幅正型光阻劑之用研究,國立成功大學碩士論文,2003。
    66. 傅士奇著,“IC製程中深次微米光阻劑之製備及微影性質研究”,國立台灣大學博士論文,2002。
    67. J. M. Frechet, H. Ito, and C. G. Wilson, Proc Microcircuit Eng., 1982, 82, 260.
    68. J. R. Sheats and B. W. Smith, Microlithography science and
    technology, Marcel Dekker, New York, 1998.
    69. G. Lee, C. Koh, J. C. Jung, M. H. Jung, H. S. Kim, K. H. Baik, and I. H. Choi, Proc. SPIE, 1999, 3678, 230.
    70. K. Nozaki and E. Yano, J. Photopolym. Sci. Technol., 1997, 4, 545.
    71. G. N. Taylor, L. E. Stillwagon, and F. M. Houlihan, Chem. Mater., 1991, 3, 1031.
    72. H. Ito, IBM J. Res. Develop., 1997, 41, 69.
    73. J. M. Shaw, J. D. Gelorme, N. C. LaBianca, W. E. Conley, and S. J. Holmes, IBM J. Res. Develop., 1997, 41, 81.
    74. R. D. Allen, G. M. Wallraff, D. C. Hofer, and R. R. Kunz, IBM J. Res. Develop., 1997, 41, 95.
    75. M. Yamana, T. Itani, H. Yoshino, S. Hashimoto, N. Samoto, and K. Kasama, Proc. SPIE, 1997, 3049, 269.
    76. J. B. Kim and J. J. Lee, Polymer, 2002, 43, 1963.
    77. T. Fujigaya, Y. Sibasaki, S. Ando, S. Kishimura, M. Endo, M. Sasago and M. Ueda, Chem. Mater., 2003, 15, 1512.
    78. H. Kudo, N. Inoue, I. Nishimura, and T. Nishikubo, Bull. Chem. Soc. Jpn., 2005, 78, 731.
    79. C. T. Black and R. Ruiz, Proc. SPIE, 2006, 6153, 615302.

    下載圖示 校內:2008-08-07公開
    校外:2008-08-07公開
    QR CODE