簡易檢索 / 詳目顯示

研究生: 陳筱淇
Chen, Hsiao-Chi
論文名稱: 應用新穎微接觸技術製備溶菌酶分子模版之研究
The Study of Fabricating Lysozyme-Imprinted Polymers by A Novel Microcontact Printing Method
指導教授: 許梅娟
Syu, Mei-Jywan
周澤川
Chou, Tse-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 150
中文關鍵詞: 掃瞄式電化學顯微鏡酵素連結免疫吸附分析分子模版溶菌酶微接觸技術
外文關鍵詞: SECM, microcontact printing, Lysozyme, molecularly imprinted polymer, ELISA
相關次數: 點閱:124下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   溶菌酶(lysozyme)為一可診斷多種病徵之生物指標,故臨床檢驗血清、尿液或唾液中的溶菌酶之濃度可協助醫生判斷病人的疾病,一般在臨床醫事檢驗上,常以免疫分析法來檢測,但在臨床上應用之免疫分析方法,不但步驟繁雜,且因自然界的抗原、抗體不易取得,所以分析成本昂貴。分子模版因具有與天然抗體相似之專一性,並且穩定性佳、製備簡單且成本低廉之諸多優點,若引用分子模版取代天然抗體,則可解決免疫分析時所需高價或稀有之天然抗體的缺點。

      本研究應用新穎的微接觸技術於製備溶菌酶分子模版,此方法的優點在於不需考慮目標分子對於高分子單體或其他溶劑的溶解度問題。在此研究中,主要是應用酵素連結免疫吸附分析法(ELISA)搭配冷螢光儀或掃瞄式電化學顯微鏡(SECM)為分析元件以鑑定溶菌酶分子模版與非分子模版之吸附效能,且可由掃瞄式電化學顯微鏡在操作時所得到之電流變化訊號可繪製出被掃瞄物件之表面輪廓圖。並分別探討交聯劑與功能性單體對分子模版吸附效能之影響。結果發現在不同交聯劑時,使用TEGDMA製備分子模版會比其他交聯劑得到較佳吸附效能;如果混合不同功能性單體,結果發現當高分子混合溶液為TEGDMA:styrene monomer: HEMA: acrylamide以莫耳比為10:1:1:1時所製備的分子模版會有最佳的吸附力,它比使用單一高分子單體所製備出的分子模版之吸附效能更高。將此分子模版置於0.01 mg/mL溶菌酶溶液中吸附2小時後可得到最大吸附效能。此外,並應用SEM及AFM等顯微鏡技術來檢視分子模版表面,由所得到之輪廓圖可觀察得經由聚合反應所形成之辨識位置;在分子模版的選擇性方面,無論分子模版於單成份、雙成份或三成份的蛋白質混合溶液中進行再吸附實驗,都具有辨識原目標物(溶菌酶)之能力。

      Lysozyme is known as an important biological index for the diagnosis of various diseases. The lysozyme concentrations in serum, urine or spit are very important determinants to help doctors to diagnose a patient. In general, lysozyme can be detected by immunoassay in clinical assays. However, clinical immunoassays have some disadvantages, such as complication and high price of antibody and antigen in nature. The advantages of molecularly imprinting polymers (MIPs) are in terms of their superior stability, low cost and ease of preparation when MIPs compare to the production of natural receptors, antibodies and enzymes. Molecularly imprinted polymer is designed to replace the natural antibody, and it can also overcome the disadvantages of the stability of natural antibody in immunoassay.

      In this study, the lysozyme-imprinted polymers were fabricated by a novel microcontact printing method. The benefit of the presented method was the solubility of template in the polymer solutions can be resolved. Using an enzyme-linked immunosorbent assay (ELISA) integrated with chemiluminesence (CL) or scanning electrochemical microscopy (SECM) as analytical element to measure rebinding efficiency of lysozyme to lysozyme-imprinted (Lys-MIP) and non-imprinted polymer (Non-MIP). And it could get the contour of lysozyme rebinding area on the lysozyme-imprinted polymer based on the different current by SECM. The effect of using different crosslinkers and functional monomers in the molecularly imprinted polymer was also investigated, individually. When using only single crosslinker as the monomer solution, the results indicated that the tetraethyleneglycol dimethacrylate (TEGDMA) based molecular imprinted polymer could get a highest rebinding efficiency than using other crosslinkers. We also found the highest performance of molecular imprinted polymer can be synthesized with the monomer solution composed TEGDMA: styrene: 2-hydrozyethyl methacrylate (HEMA): acrylamide with the mole ratio of 10:1:1:1. The maximum rebinding efficiency of lysozyme on the molecularly imprinted polymer was achieved in 0.01 mg/ml lysozyme solution and 2 hrs incubation. The surface morphologies of the molecularly imprinted polymer were monitored by a scanning electron microscope (SEM) and an atomic force microscope (AFM). The selectivity of the lysozyme-imprinted polymer showed very good recognition to lysozyme no matter in a single, binary or trinary protein solution.

    中文摘要…………………………………………………………I 英文摘要…………………………………………………………III 誌謝………………………………………………………………V 目錄………………………………………………………………VI 表目錄.………………………………………………………… X 圖目錄……………………………………………………………XI 專有名詞對照表…………………………………………………XVII 符號說明…………………………………………………………XIX 第一章 緒論………………………………………………………1 1-1 溶菌酶(Lysozyme)………………………………………1 1-1-1 溶菌酶之簡介……………………………………1 1-1-2 溶菌酶之種類……………………………………1 1-1-3 溶菌酶之結構……………………………………5 1-2 溶菌酶之臨床意義………………………………………8 1-3 溶菌酶之檢測方法………………………………………10 1-4 溶菌酶之分子模版………………………………………10 1-5 研究動機…………………………………………………14 第二章 原理………………………………………………………15 2-1 分子模版…………………………………………………15 2-1-1 分子模版之起源與發展…………………………15 2-1-2 分子模版之原理…………………………………16 2-1-3 分子模版之材料…………………………………20 2-1-4 分子模版之應用…………………………………23 2-1-5 分子模版之動力式推導…………………………26 2-2 酵素連結免疫吸附系統原理……………………………28 2-3 微熱卡計…………………………………………………32 2-4 掃瞄式電化學顯微鏡……………………………………35 第三章 實驗設備與方法…………………………………………37 3-1 藥品與儀器………………………………………………37 3-1-1 藥品………………………………………………37 3-1-2 儀器………………………………………………40 3-2 實驗流程與步驟…………………………………………42 3-2-1 藥品純化…………………………………………42 3-2-1-1 交聯劑(TEGDMA)之純化………………42 3-2-1-2 苯乙烯(styrene)之純化…………… 42 3-2-2 玻璃清洗與改質…………………………………43 3-2-2-1蓋玻片之清洗與改質………………… 43 3-2-2-2載玻片之清洗與改質………………… 45 3-2-3 微接觸分子模版薄膜(micro-contact polymer film)之壓印與聚合…………………………… 45 3-2-4 目標分子之移除…………………………………49 3-2-5 吸附分析…………………………………………49 3-2-5-1 單一成份吸附…………………………49 3-2-5-2 雙成分吸附..…………………………49 3-2-6 偵測方法…………………………………………51 3-2-6-1 冷光偵測………………………………51 3-2-6-2 螢光偵測………………………………52 3-2-7 微熱卡計之等溫滴定……………………………57 3-2-8 掃瞄式電化學顯微鏡(SECM)之掃瞄步驟………59 3-3 研究架構…………………………………………………61 第四章 結果與討論………………………………………………62 4-1 以微接觸技術製備溶菌酶分子模版的可行性…………62 4-1-1 接觸角測試………………………………………62 4-1-2 冷光測試…………………………………………65 4-2 影響分子模版吸附效能之因素…………………………70 4-2-1 交聯性之影響……………………………………70 4-2-2 功能性單體之選擇………………………………77 4-2-3 聚合時有無通氮氣之影響………………………80 4-2-4 不同吸附濃度對吸附效能之影響………………82 4-2-5 不同吸附時間對吸附效能之影響………………82 4-3 溶菌酶分子模版表面型態………………………………85 4-3-1 掃描式電子顯微鏡(SEM)……………………… 85 4-3-2 原子力學顯微鏡(AFM)………………………… 85 4-4 溶菌酶分子模版之選擇性………………………………88 4-4-1 單一蛋白質成份溶液對溶菌酶分子模版選擇性 之探討……………………………………………88 4-4-2 溶菌酶與其他物質的混合液對溶菌酶分子模版 選擇性之探討……………………………………94 4-5 以掃瞄式電化學顯微鏡(SECM)偵測分子模版…………101 4-5-1 分子模版與非分子模版之電流變化……………101 4-5-2 SECM 影像……………………………………… 103 4-6 以旋轉塗佈的方法製備溶菌酶分子模版………………105 第五章 綜合討論…………………………………………………109 5-1 交聯劑與功能性單體對分子模版吸附效能之影響……109 5-1-1 交聯劑對分子模版吸附效能之影響……………109 5-1-2 功能性單體對分子模版吸附效能之影響………110 5-2 分子模版之平衡常數……………………………………110 5-3 溶菌酶分子模版於單一及多成份溶液下之選擇性……112 5-3-1 溶菌酶分子模版於單一成份溶液下之選擇性…112 5-3-2 溶菌酶分子模版於多成份溶液下之選擇性……112 5-4 以掃描式電化學顯微鏡偵測分子模版之訊號…………114 第六章 結論………………………………………………………115 參考文獻… ……………………………………………………117 附錄…………………………………………………………… 124

    [1] " http: //www.bv229.k12.ks.us/biophilia/lysozyme.htm.”, 2005/07/14.

    [2] 人民教育出版社, "http://www.pep.com.cn/", 2005/07/14.
    [3] V.A. Proctor, F.E. Cunningham, "The chemistry of lysozyme and its use as a food preservative and a pharmaceutical," CRC Critical Reviews in Food Science and Nutrition, vol. 26, pp. 359, 1988.
    [4] D.M. Rothwarf, H.A. Scheraga, "Role of non-native and hydrophobic interaction in the folding of hen egg white lysozyme," Biochemistry, vol. 35, pp. 13797, 1996.
    [5] 游蘇寧, 人體標準正常值手冊: 中華醫學會審編,初版,P159,1995.
    [6] 大眾醫藥網, "http://www.windrug.com", 2005/07/14.
    [7] 中華女性網, "http://www.china-woman.com", 2005/07/14.
    [8] 康易網, "http://www.511511.com", 2005/07/14.
    [9] 放心求醫網"http://www.fx120.net/hyjc/tyhy/tyjc/2004040113285
    17349.htm.", 2005/07/14.
    [10] J. Chongqiu, L. Li, "Lysozyme enhanced europium-etacycline complex fluorescence: a new spectrofluorimetric method for the determination of lysozyme," Analytica Chimica Acta, vol. 511, pp. 11-16, 2004.
    [11] K. Hirayama, Y. Sakai, K. Kameoka, "Synthesis of polymer particles with specific lysozyme recognition sites by a molecular imprinting technique," Journal of Applied Polymer Science, vol. 81, pp. 3378-3387, 2001.
    [12] K. Hirayama, K. Kameoka, "Synthesis of polymer particles with specific binding sites for lysozyme by a molecular imprinting technique and its application to a quartz crystal microbalance sensor," Bunseki Kagaku, vol. 49, pp. 29-33, 2000.
    [13] S.H. Ou, M.C. Wu, T.C. Chou, C.C. Liu, "Polyacrylamide gels with electrostatic functional groups for the molecular imprinting of lysozyme," Analytica Chimica Acta, vol. 504, pp. 163-166, 2004.
    [14] J. Rick, T.C. Chou, "Enthalpy changes associated with protein binding to thin films," Biosensors & Bioelectronics, vol. 20, pp. 1878-1883, 2005.
    [15] "http://www.smi.tu-berlin.de/story/MIT.htm."
    [16] S. Mudd, "A hypothetical mechanism of antibody production," Journal of Immunology, vol. 23, pp. 423, 1932.
    [17] L. Pauling, "A theory of the structure and process of formation of antibodies," Journal of the American Chemical Society, vol. 62, 1940.
    [18] B. Sellergren, "Molecularly imprinted polymers, Man-made mimics of antibodies and their application in analytical chemistry," Elesvier, New York, vol. 23, 2001.
    [19] A.G. Peter, "Molecular Imprinting: Recent Developments and the Road Ahead," Reactive and Functional Polymer, vol. 41, pp. 115-124, 1999.
    [20] G. Wulff, "Molecular imprinting in cross-linked materials with the aid of molecular templates - a way towards artificial antibodies," Angewandte Chemie (International Edition in English), vol. 37, pp. 1812-1832, 1995.
    [21] M.J. Whitcombe, E.N. Vulfson, "Imprinted polymers," Advanced Materials, vol. 13, pp. 467-478, 2001.
    [22] B. Sellergren, "Noncovalent molecular imprinting: antibody-like molecular recognition in polymeric network materials," Trends in analytical chemistry, vol. 16, pp. 310-320, 1997.
    [23] D. Kriz, K. Mosbach, "Competitive amperometric morphine sensor based on an agarose immobilised molecularly imprinted polymer," Analytica Chimica Acta, vol. 300, pp. 71-75, 1995.
    [24] H.Y. Wang, T. Kobayashi, N. Fujii, "Molecular Imprinting of Theophylline in Acrylonitrile-acrylic acid Copolymer membrane," Chemistry Letters, pp. 927-928, 1995.
    [25] T. Kobayashi, H.Y. Wang, N. Fujii, "Molecular Imprint Membranes Prepared by the Phase Inversion Precipitation Technique," Langmuir, vol. 12, pp. 4850-4856, 1996.
    [26] H.Y. Wang, T. Kobayashi, N. Fujii, "Molecular imprint membranes prepared by the phase inversion precipitation technique," Langmuir, vol. 12, pp. 4850-4856, 1996.
    [27] S.A. Piletsky, E.V. Piletskaya, A.V. Elgersma, K. Yano, I. Karube, "Atrazine sensing by molecularly imprinted membranes," Biosensors & Bioelectronics, vol. 10, pp. 959-964, 1995.
    [28] M. Siemann, L. I. Andersson, K. Mosbach, "Selective recognition of the herbicide atrazine by noncovalent molecularly imprinted polymers," Journal of Agricultural and Food Chemistry, vol. 44, pp. 141-145, 1996.
    [29] K. Sreenivasan, "Imparting cholesterol recognition sites in radiation polymerised Poly(2-hydroxyethyl methacrylate) by molecular imprinting," Polymer International, vol. 42, pp. 169-172, 1997.
    [30] K. Sreenivasan, "Effect of the type of monomers of molecularly imprinted polymers on the interaction with steroids," Journal of Applied Polymer Science, vol. 68, pp. 1863-1866, 1998.
    [31] P.S. Reddy, T. Kobayashi, N. Fujii, "Molecular imprinting in hydrogen bonding networks of polyamide nylon for recognition of amino acids," Chemistry Letters, pp. 293-294, 1999.
    [32] C.Y. Lin, D.F. Tai, T.Z. Wu, "Discrimination of peptides by using a molecularly imprinted piezoelectric biosensor," Chemistry-a European Journal, vol. 9, pp. 5107-5110, 2003.
    [33] J.T. Huang, J. Zhang, J.Q. Zhang, S.H. Zheng, "Template imprinting amphoteric polymer for the recognition of proteins," Journal of Applied Polymer Science, vol. 95, pp. 358-361, 2005.
    [34] O. Hayden, R. Bindeus, C. Haderspock, K.J. Mann, B. Wirl, F.L. Dickert, "Mass-sensitive detection of cells, viruses and enzymes with artificial receptors," Sensors and Actuators B-Chemical, vol. 91, pp. 316-319, 2003.
    [35] F.L. Dickert, O. Hayden, "Bioimprinting of polymers and sol-gel phases. Selective detection of yeasts with imprinted polymers," Analytical Chemistry, vol. 74, pp. 1302-1306, 2002.
    [36] K. Haupt, "Molecularly imprinted polymers: The next generation," Analytical Chemistry, vol. 75, pp. 376a-383a, 2003.
    [37] R. Arshady, "Functional monomers," Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, vol. 32, pp. 101-132, 1992.
    [38] P.A.G. Cormack, A.Z. Elorza, "Molecularly imprinted polymers: synthesis and characterisation," Journal of Chromatography B, vol. 804, pp. 173-182, 2004.
    [39] J. Whitcombe, M.E. Rodriguez, P. Villar, E.N. Vulfson, "A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors of cholesterol," Journal of the American Chemical Society, vol. 147, pp. 7105-7111, 1995.
    [40] M. Kempe, "Antibody-Mimicking polymers as chiral stationary phases in HPLC," Analytical Chemistry, vol. 68, pp. 1948-1953, 1996.
    [41] E. Yilmaz, K. Mosbach, K. Haupt, "Influence of functional and cross-linking monomers and the amount of template on the performance of molecularly imprinted polymers in binding assays," Analytical Communications, vol. 36, pp. 167-170, 1999.
    [42] G. Wulff, "Polymeric Reagents and Catalysts," ACS Symp.Ser, vol. 308, pp. 186, 1986.
    [43] K. Mosbach, O. Ramstrom, "The emerging technique of molecular imprinting and its future impact on biotechnology," Biotechnology, vol. 14, pp. 163-170, 1996.
    [44] M. Ulbricht, "Membrane separations using molecularly imprinted polymers," Journal of chromatography B, vol. 804, pp. 113-125, 2004.
    [45] R.J. Ansell, D. Kriz, K. Mosbach, "Molecularly imprinted polymers for bioanalysis: chromatography, binding assays and biomimetic sensors," Current Opinion in Biotechnology, vol. 7, pp. 89-94, 1996.
    [46] T.Y. Lin, C.H. Hu, T.C. Chou, "Determination of albumin concentration by MIP-QCM sensor," Biosensors & Bioelectronics, vol. 20, pp. 75-81, 2004.
    [47] K. Haupt, K. Mosbach, "Molecularly imprinted polymers and their use in biomimetic sensors," Chemical Reviews, vol. 100, pp. 2495-2504, 2000.
    [48] R.J. Ansell, "Molecularly imprinted polymers in pseudoimmunoassay," Journal of chromatography B, vol. 804, pp. 151-165, 2004.
    [49] O. Ramstrom, K.Skudar, J. Haines, P. Patel, O. Bruggemann, "Food Analyses Using Molecularly Imprinted Polymers," Journal of agricultural and food chemistry, vol. 49, pp. 2106, 2001.
    [50] M. J. Whitcombe, C. Alexander, E. N. Vulfson, "Smart polymers for the food industry," Trends in Food Science & Technology, vol. 8, pp. 140-145, 1997.
    [51] J.Y. Ju, C.S. Shin, M.J. Whitcombe, E.N. Vulfson, "Binding properties of an aminostyrene-based polymer imprinted with glutamylated monascus pigments," Biotechnology Techniques, vol. 13, pp. 665-669, 1999.
    [52] J.Y. Ju, C.S. Shin, M.J. Whitcombe, E.N. Vulfson, "Imprinted polymers as tools for the recovery of secondary metabolites produced by fermentation," Biotechnology and Bioengineering, vol. 64, pp. 232-239, 1999.
    [53] D.A. Lauffenburger, J.J. Linderman, "Receptors model for binding, trafficking, and signaling." New York Oxford: Oxford university press, 1993.
    [54] 王南歷, "免疫學原理與實用," 合記圖書出版社,第二版,1992.
    [55] K. Haupt, A. Dzgoev, K. Mosbach, "Assay system for the herbicide 2, 4-dichlorophenoxyacetic acid using a molecularly imprinted polymer as an artificial recognition element," Analytical Chemistry, vol. 70, pp. 628-631, 1998.
    [56] I. Surugiu, L. Ye, E. Yilmaz, A. Dzgoev, B. Danielsson, K. Mosbach, K. Haupt, "An enzyme-linked molecularly imprinted sorbent assay," Analyst, vol. 125, pp. 13-16, 1999.
    [57] I. Surugiu, B. Danielsson, L. Ye, K. Mosbach, K. Haupt, "Chemiluminescence imaging ELISA using an imprinted polymer as the recognition element instead of an antibody," Analytical Chemistry, vol. 73, pp. 487-491, 2001.
    [58] T. A. Sweden, "Thermometric 2250-series."
    [59] W.Y. Chen, C.S. Chen, F.Y. Lin, "Molecular recognition in imprinted polymers: thermodynamic investigation of analyte binding using microcalorimetry," Journal of Chromatography A, vol. 923, pp. 1-6, 2001.
    [60] W.P. Fish, J. Ferreira, R.D. Sheardy, N.H. Snow, T.P. O'Brien, "Rational design of an imprinted polymer: Maximizing selectivity by optimizing the monomer-template ratio for a cinchonidine MIP, prior to polymerization, using microcalorimetry," Journal of Liquid Chromatography & Related Technologies, vol. 28, pp. 1-15, 2005.
    [61] 陳威志, To Design the Creatinine Imprinted Polymers Based on the Information from Microcalorimeter. 碩士論文,國立成功大學, 2004.
    [62] F.Y. Lin, W.Y. Chen, L.C. Sang, "Microcalorimetric studies of the interactions of lysozyme with immobilized metal ions: Effects of ion, pH value, and salt concentration," Journal of Colloid and Interface Science, vol. 214, pp. 373-379, 1999.
    [63] H. Shiku, T. Matsue, I. Uchida, "Detection of microspotted carcinoembryonic antigen on a glass substrate by scanning electrochemical microscopy," Analytical Chemistry, vol. 68, pp. 1276-1278, 1996.

    下載圖示 校內:2008-07-27公開
    校外:2008-07-27公開
    QR CODE