簡易檢索 / 詳目顯示

研究生: 丁瑜
Ting, Yu
論文名稱: 基於能量優化的不可展曲面展開法
Energy-Based Un-developable Surface Flattening Method
指導教授: 方晶晶
Fang, Jing-Jing
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 167
中文關鍵詞: 曲面網格化網格變形能模型曲面展開應變能優化
外文關鍵詞: Surface Tessellation, Deformation Energy Model, Surface Flattening, Energy Optimization
相關次數: 點閱:124下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今的生活中,充斥著許許多多的曲面產品。然而這些曲面產品往往要從平面的材料製成。因此本研究提出一種以能量為基礎將不可展曲面(Un-Developed Surface)攤平展開(Flattening)的方法,整個學理方法包含了前處理─曲面網格化、曲面初始展開、網格應變能優化處理、以及網格應變能釋放等四大步驟。
    論文首先討論如何使一個連續曲面在保有曲面幾何特徵與足夠的精度下,進行曲面網格化(Tessellation)的演算法。網格逐一座標轉換,建立無交疊(Non-Overlap)的排列靠攏(Alignment)關係,完成曲面初始展開。再以網格變形能模型(Mesh Deformation Energy Model)理論,在保有設定的拘束條件下,穩定、有效的減少展開結果的應變能。最後,本研究提供了一種有效降低變形能量的網格群裂開方法,藉由放鬆部分網格的拘束,達到降低網格的扭曲(Distortions)程度和變形能的目的,進而縮短展開結果和原始設計曲面的差異(Deviation)。
    不可展曲面展開的結果可能有成千上萬種,本研究利用網格變形能評估曲面展開結果優劣,比較各種拘束條件與網格群裂開條件下的不同展開結果,嘗試找出影響版型展開結果之變因,進而找出在特定限制下的優化應變能展開版型(Patterns),並用網格總面積與特徵圍長的差異量評估驗證展開結果。
    以本文的研究方法為技術核心,開發了曲面展開軟體(SurfaceFlatten),適用於各種設計產品曲面展開應用,並在文中提出服裝設計的立體剪裁(Drapping)為例,證實東方的文化式(Bunka)服裝版型公式與西方的立體剪裁有不謀而合之處。本開發更可以攤平展開原理應用於3D材質貼圖(Texture Mapping),減少貼圖時的變形量。最後提供服裝界常用的版型輸出格式至一般的二維版型處理軟體,以銜接到製造端。

    Nowadays, products combined with multi-surface are full of our life. These products are made for planar materials. This research presents a surface flattening method which contains a complete process of flattening a 3D un-developed surface to 2D plane. The process contains four steps, surface tessellation, surface initial flattening, mesh deformation energy optimization and mesh deformation energy release.
    Firstly, the designed surfaces are tessellated by the algorithm that meets both requirements of the surface features and tessellation precision. Second, surface initial fattening is developed by the processes of single mesh transformation, mesh re-arrangement and mesh re-alignment by collision detection method with the condition of non-overlap. According to the deformation energy model, the total potential energy is calculated and used to locate the possible pattern of the less deformation energy in way of maintaining accuracy and efficiency. Finally, we proposed a method which can decrease the mesh deformation energy by splitting the mesh groups in this thesis. By relaxing some constraints of mesh corners, this method reduces the mesh distortion and deformation energy so that shortening the deviation between the flattened results and the original designed surfaces.
    Outcomes of the flattened patterns of un-flattened surfaces may be plenty. In this study, we develop an evaluation method in which the mesh deformation energy is taken into consideration. So that the flattened results can be evaluated between various conditions combined with different constraints and conditions of energy relaxation. In this study, the author have identified the factors which influence the final flattened results, and then reveal the flattened results with a less deformation energy under certain constraints. The differences of surface area and the feature girths between the flattened results and the original designed surface are also taken into consideration to certify and check the flattened results.
    With the research method of this thesis, we developed a software named SurfaceFlatten. SurfaceFlatten can be widely applied in the product design regions and we take the drapping of garment design for instance in this thesis to prove the coincidence between the Bunka pattern formula and the drapping technology. With the flattened results, less distorted results can be provided in texture mapping. Finally, this research provides the file formats which are generally used in garment industry. These formats can be outputted to two dimensional pattern making software to be the interface between the design side and the manufacturing side.

    摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 XI 表目錄 XVI 符號說明 XVII 第一章 緒論 1 1.1 研究背景 3 1.2 研究動機 4 1.3 研究目的與目標 5 1.4 本文架構 6 第二章 文獻回顧 10 2.1 曲面幾何及其網格化 10 2.1.1 NURBS曲面 10 2.1.2 曲面網格化 12 2.2 曲面展開法 14 2.2.1 幾何展開法 15 2.2.2 力學展開法 17 2.2.3 混合展開法 19 第三章 系統架構與規劃 24 3.1 立體服裝設計專案架構 24 3.2 曲面展開基本架構與流程 30 第四章 曲面分割與初始展開 32 4.1 曲面特徵對應 32 4.2 曲面網格分割法 38 4.2.1 網格精度定義與計算 38 4.2.2 曲面網格分割 39 4.2.3 裁切聚合線(Trim Polyline)於網格中的表示法 42 4.3 曲面幾何分析 45 4.4 初始展開 50 4.5 展開結果展示 55 4.5.1 人台特徵點、線說明 56 4.5.2 服裝與人台特徵對應 57 4.5.3 網格分割 60 4.5.4 版型特徵點特徵線說明 63 4.5.5 展開結果 64 4.6 本章小結 68 第五章 網格應變能優化 70 5.1 網格變形能量分析 70 5.2 網格應變能優化 76 5.2.1 拘束條件 76 5.2.2 搜尋流程 77 5.3 網格重疊 84 5.3.1 現象說明 84 5.3.2 重疊檢測 85 5.3.3 網格重疊之因應處置 86 5.4 結果展示與討論 87 5.4.1 目標函式 87 5.4.2 拘束條件 88 5.4.3 最佳設計模式 90 5.4.4 結果分析與討論 92 5.4.5 結果驗證 98 5.5 本章小結 100 第六章 能量釋放 102 6.1 研究方法 102 6.1.1 能量釋放概念 102 6.1.2 能量釋放分類 103 6.1.3 能量釋放過程與要素 105 6.2 能量釋放實作 107 6.2.1 曲率分析實作 108 6.2.2 最佳設計模式 110 6.2.3 結果分析與討論 111 6.2.4 能量釋放位置 116 6.2.5 能量釋放長度 118 6.2.6 能量釋放次數 119 6.3 能量釋放結果驗證與分析 122 6.3.1 長度與網格總面積驗證 122 6.3.2 文化式版型驗證與討論 123 6.4 本章小結 126 第七章 曲面展開SurfaceFlatten系統 128 7.1 SurfaceFlatten系統簡介 128 7.1.1 應變能分布計算 130 7.1.2 高斯曲率分布計算 133 7.2 材質貼圖應用 134 7.2.1 曲面貼圖原理 135 7.2.2 貼圖座標計算 137 7.2.3 實作展示與討論 138 7.3 版型輪廓輸出應用 141 7.3.1 DXF檔案格式分析 142 7.3.2 DXF檔案架構模式 143 7.3.3 DXF檔案實作輸出 146 7.4 本章小結 148 第八章 結論與討論 149 8.1 結論 149 8.2 討論 152 8.3 未來展望 155 參考文獻 159

    [1] Shimada T. and Tada, Y., "Development of a curved surface using a finite element method," in 1st Int. Conf. Computer-Aided Optimum Design of Structures, C.A. Brebbia, S. Hernandez (Eds.), pp.23-30, 1989.
    [2] Shimada T. and Tada, Y., "Approximate transformation of an arbitrary curved surface into a plane using dynamic programming," Computer-Aided Design, Vol.23, No.2, pp.153-159, 1991.
    [3] Sundar Varada Raj P., "Evolution of generic mathematical models and algorithms for the surface development and manufacture of complex ducts," Journal of Engineering for Industry, Vol.117, No.2, pp.177-185, 1995.
    [4] Manning J. R., "Computerized pattern cutting," Computer-Aided Design, Vol.12, No.1, pp.43-47, 1980.
    [5] Angenent S., Haker, S., Tannenbaum, A., and Kikinis, R., "Laplace-Beltrami operator and brain flattening," IEEE Transactions on Medical Imaging, 1999.
    [6] Schwartz E. L., Shaw, A., and Wolfson, E., "A numerical solution to the generalized mapmaker's problem: flattening nonconvex polyhedral surfaces," Pattern Analysis and Machine Intelligence, IEEE Transactions on, Vol.11, No.9, pp.1005-1008, 1989.
    [7] 陳華珠, 3D樣板設計系統應用於服裝打版之探討-使用一套3D CAD系統的個案研究, 跨世紀織品服裝教育與研究發展, 2000.
    [8] Fang J.-J. and Ding, Y., "Expert-based customized pattern-making automation: Part I. Basic patterns," International Journal of Clothing Science and Technology, Vol.20, No.1-2, pp.26-40, 2008.
    [9] Fang J.-J. and Ding, Y., "Energy-Based Optimum Pattern Development for Garment Industry," Advanced Materials Research, Vol.201-203, pp.1223-1232, 2011.
    [10] Fang J.-J. and Ding, Y., "Energy-based optimal darted pattern for garment design," Accepted by International Journal of Clothing Science and Technology, 2013.
    [11] Coons S. A., Surfaces for computer-aided design of space forms, Massachusetts Institute of Technology, Cambridge, MA, 1967.
    [12] Forrest A. R., "Curves and surfaces for computer-aided design," PhD dissertation, Cambridge University, Cambridge, 1968.
    [13] Sabin M., Offset parametric surfaces., Technical Report VTO/MS/149, British Aircraft Corporation, 1968.
    [14] Sabin M., Conditions for continuity of surface normals between adjacent parametric surfaces, Technical Report VTO/MS/151, British Aircraft Corporation, 1968.
    [15] Versprille K., "Computer aided design applications of the rational B-spline approximation form," PhD thesis, Syracuse University, 1975.
    [16] Piegl L. A. and Richard, A. M., "Tessellating trimmed nurbs surfaces," Computer-Aided Design, Vol.27, No.1, pp.16-26, 1995.
    [17] Piegl L. A. and Tiller, W., "Geometry-based triangulation of trimmed NURBS surfaces," Computer-Aided Design, Vol.30, No.1, pp.11-18, 1998.
    [18] Song D. and Wang, H., "Automesh for trimmed surface entity of IGES/PDES," Advances in Engineering Software, Vol.30, No.6, pp.401-406, 1999.
    [19] Yang S.-N. and Yang, Y.-J., "Step length problem for trimming curve approximation in tessellating trimmed surfaces," J. Comput. Appl. Math., Vol.140, No.1-2, pp.867-876, 2002.
    [20] Piegl L. A. and Tiller, W., The NURBS book, Springer, Berlin, 1995.
    [21] Ma Y. L. and Hewitt, W. T., "Point inversion and projection for NURBS curve and surface: Control polygon approach," Computer Aided Geometric Design, Vol.20, No.2, pp.79-99, 2003.
    [22] Barnhill R. E. and Kersey, S. N., "A marching method for parametric surface/surface intersection," Computer Aided Geometric Design, Vol.7, No.1–4, pp.257-280, 1990.
    [23] Ho-Le K., "Finite element mesh generation methods: a review and classification," Computer-Aided Design, Vol.20, No.1, pp.27-38, 1988.
    [24] Alfonzetti S., Coco, S., Cavalieri, S., and Malgeri, M., "Automatic mesh generation by the let-it-grow neural network," IEEE Transactions on Magnetics, Vol.32, No.3, pp.1349-1352, 1996.
    [25] Lee Y. T., Pennington, A., and Shaw, N. K., "Automatic finite-element mesh generation from geometric models—A point-based approach," ACM Trans. Graph., Vol.3, No.4, pp.287-311, 1984.
    [26] Kikuchi N., "Adaptive grid-design methods for finite delement analysis," Comput. Methods Appl. Mech. Eng., Vol.55, No.1-2, pp.129-160, 1986.
    [27] Min W., Tangt, Z., Zhang, Z., Zhou, Y., and Wang, M., "Automatic mesh generation for multiply connected planar regions based on mesh grading propagation," Computer-Aided Design, Vol.28, No.9, pp.671-681, 1996.
    [28] Hinds B. K., McCartney, J., and Woods, G., "Pattern development for 3D surfaces," Computer-Aided Design, Vol.23, No.8, pp.583-592, 1991.
    [29] Bennis C., Vézien, J.-M., and Iglésias, G., "Piecewise surface flattening for non-distorted texture mapping," SIGGRAPH Comput. Graph., Vol.25, No.4, pp.237-246, 1991.
    [30] Parida L. and Mudur, S. P., "Constraint-satisfying planar development of complex surfaces," Computer-Aided Design, Vol.25, No.4, pp.225-232, 1993.
    [31] Azariadis P. and Aspragathos, N., "Design of plane developments of doubly curved surfaces," Computer-Aided Design, Vol.29, No.10, pp.675-685, 1997.
    [32] Cho W., Patrikalakis, N. M., and Peraire, J., "Approximate development of trimmed patches for surface tessellation," Computer-Aided Design, Vol.30, No.14, pp.1077-1087, 1998.
    [33] Cho W., Maekawa, T., Patrikalakis, N. M., and Peraire, J., "Topologically reliable approximation of trimmed polynomial surface patches," Graphical Models and Image Processing, Vol.61, No.2, pp.84-109, 1999.
    [34] Grossmann R., Kiryati, N., and Kimmel, R., Computational surface flattening: A voxel-based approach, in Visual Form 2001, Arcelli, C., Cordella, L., and Baja, G., Editors. 2001, Springer Berlin Heidelberg. p. 196-204.
    [35] Zhong Y. and Xu, B., "A physically based method for triangulated surface flattening," Computer-Aided Design, Vol.38, No.10, pp.1062-1073, 2006.
    [36] Yang Y. and Zhang, W., "Prototype garment pattern flattening based on individual 3D virtual dummy," International Journal of Clothing Science and Technology, Vol.19, No.5, pp.334-348, 2007.
    [37] Chu C.-H. and Séquin, C. H., "Developable Bézier patches: properties and design," Computer-Aided Design, Vol.34, No.7, pp.511-527, 2002.
    [38] Aumann G., "A simple algorithm for designing developable Bézier surfaces," Computer Aided Geometric Design, Vol.20, No.8-9, pp.601-619, 2003.
    [39] Chu C.-H., Wang, C. C. L., and Tsai, C.-R., "Computer aided geometric design of strip using developable Bézier patches," Computers in Industry, Vol.59, No.6, pp.601-611, 2008.
    [40] Bodduluri R. M. C. and Ravani, B., "Design of developable surfaces using duality between plane and point geometries," Computer-Aided Design, Vol.25, No.10, pp.621-632, 1993.
    [41] Pottmann H. and Farin, G., "Developable rational Bézier and B-spline surfaces," Computer Aided Geometric Design, Vol.12, No.5, pp.513-531, 1995.
    [42] Tao X. and Bruniaux, P., "Toward advanced three-dimensional modeling of garment prototype from draping technique," International Journal of Clothing Science and Technology, Vol.25, No.4, pp.266-283, 2013.
    [43] Azariadis P. N. and Aspragathos, N. A., "Geodesic curvature preservation in surface flattening through constrained global optimization," Computer-Aided Design, Vol.33, No.8, pp.581-591, 2001.
    [44] Ohsaki M. and Fujiwara, J., "Developability conditions for prestress optimization of a curved surface," Computer Methods in Applied Mechanics and Engineering, Vol.192, No.1-2, pp.77-94, 2003.
    [45] Luo Z. G. and Yuen, M. M. F., "Reactive 2D/3D garment pattern design modification," Computer-Aided Design, Vol.37, No.6, pp.623-630, 2005.
    [46] Wang C. C. L., Smith, S. S. F., and Yuen, M. M. F., "Surface flattening based on energy model," Computer-Aided Design, Vol.34, No.11, pp.823-833, 2002.
    [47] McCartney J., Hinds, B. K., and Seow, B. L., "The flattening of triangulated surfaces incorporating darts and gussets," Computer-Aided Design, Vol.31, No.4, pp.249-260, 1999.
    [48] McCartney J., Hinds, B. K., Seow, B. L., and Gong, D., "An energy based model for the flattening of woven fabrics," Journal of Materials Processing Technology, Vol.107, No.1-3, pp.312-318, 2000.
    [49] McCartney J., Hinds, B. K., Seow, B. L., and Gong, D., "Dedicated 3D CAD for garment modelling," Journal of Materials Processing Technology, Vol.107, No.1-3, pp.31-36, 2000.
    [50] McCartney J., Hinds, B. K., and Chong, K. W., "Pattern flattening for orthotropic materials," Computer-Aided Design, Vol.37, No.6, pp.631-644, 2005.
    [51] Aono M., Breen, D. E., and Wozny, M. J., "Fitting a woven-cloth model to a curved surface: mapping algorithms," Computer-Aided Design, Vol.26, No.4, pp.278-292, 1994.
    [52] Aono M., Denti, P., Breen, D. E., and Wozny, M. J., "Fitting a woven cloth model to a curved surface: dart insertion," Computer Graphics and Applications, IEEE, Vol.16, No.5, pp.60-70, 1996.
    [53] Sheffer A. and de Sturler, E., "Parameterization of faceted surfaces for meshing using angle-based flattening," Engineering with Computers, Vol.17, No.3, pp.326-337, 2001.
    [54] Sheffer A., Levy, B., Mogilnitsky, M., and Bogomyakov, A., "ABF++: fast and robust angle based flattening," ACM Trans. Graph., Vol.24, No.2, pp.311-330, 2005.
    [55] Wang C. C. L., Wang, Y., Tang, K., and Yuen, M. M. F., "Reduce the stretch in surface flattening by finding cutting paths to the surface boundary," Computer-Aided Design, Vol.36, No.8, pp.665-677, 2004.
    [56] Wang C. C. L., Tang, K., and Yeung, B. M. L., "Freeform surface flattening based on fitting a woven mesh model," Computer-Aided Design, Vol.37, No.8, pp.799-814, 2005.
    [57] Wang C. C. L., "WireWarping: A fast surface flattening approach with length-preserved feature curves," Computer-Aided Design, Vol.40, No.3, pp.381-395, 2008.
    [58] Wang C. C. L., "Computing Length-Preserved Free Boundary for Quasi-Developable Mesh Segmentation," IEEE Transactions on Visualization and Computer Graphics, Vol.14, No.1, pp.25-36, 2008.
    [59] Wang C. C. L. and Tang, K., "Pattern computation for compression garment," in Proceedings of the 2008 ACM symposium on Solid and physical modeling, Stony Brook, New York, pp.203-211, 2008.
    [60] Wang C. C. L. and Tang, K., "Pattern computation for compression garment by a physical/geometric approach," Computer-Aided Design, Vol.42, No.2, pp.78-86, 2010.
    [61] Kang T. J. and Kim, S. M., "Optimized garment pattern generation based on three-dimensional anthropometric measurement," International Journal of Clothing Science and Technology, Vol.12, No.4, pp.240-254, 2000.
    [62] Kim S. M. and Kang, T. J., "Garment pattern generation from body scan data," Computer-Aided Design, Vol.35, No.7, pp.611-618, 2003.
    [63] Sul I. H. and Kang, T. J., "Interactive garment pattern design using virtual scissoring method," International Journal of Clothing Science and Technology, Vol.18, No.1, pp.31-42, 2006.
    [64] Leong I.-F., Fang, J.-J., and Tsai, M.-J., "Automatic body feature extraction from a marker-less scanned human body," Computer-Aided Design, Vol.39, No.7, pp.568-582, 2007.
    [65] Leong I.-F., Fang, J.-J., and Tsai, M.-J., "A feature-based anthropometry for garment industry," International Journal of Clothing Science and Technology, Vol.25, No.1, pp.6-23, 2013.
    [66] 陳志皇, "從相片建構三維數位人體模型 ", 國立成功大學機械工程所碩士論文, 2005.
    [67] 張志偉, "服飾設計自動化─基礎介面與三維領形設計之開發," 國立成功大學機械工程所碩士論文, 2000.
    [68] 廖振凱, "服飾設計自動化─三維服裝設計與編修," 國立成功大學機械工程所碩士論文, 2001.
    [69] 陳建誠, "服飾設計自動化─三維服裝設計與剪裁," 國立成功大學機械工程所碩士論文, 2002.
    [70] 田佳鑫, "Trimmed NURBS 曲面於電腦輔助三維服裝設計之應用," 國立成功大學機械工程所碩士論文, 2004.
    [71] Fang J.-J. and Liao, C.-K., "3D garment restyling based on computer mannequin model—Part I: system kernel and formulas," International Journal of Clothing Science and Technology, Vol.17, No.5, pp.292-306, 2005.
    [72] Fang J.-J. and Liao, C.-K., "3D Garment Restyling Based on Computer Mannequin Model—Part II: Results and Applications," International Journal of Clothing Science and Technology, Vol.17, No.5, pp.307-319, 2005.
    [73] Fang J.-J. and Tien, C.-H., "Trimmed NURBS surface applications in computerized 3D fashion design for garment industry," International Journal of Clothing Science and Technology, Vol.25, No.1, pp.24-42, 2013.
    [74] 梁國賢, "服飾設計自動化- 應用於衣版製作和花紋產生的曲面攤平法 ", 國立成功大學機械工程所碩士論文, 2002.
    [75] 丁瑜, "服飾設計自動化-自動版型的產生," 國立成功大學機械工程所碩士論文, 2003.
    [76] 郭叡坤, "以不規則排列質點系統進行真實衣版之服裝模擬," 國立成功大學機械工程所碩士論文, 2008.
    [77] Leong I.-F., Kuo, J.-K., and Fang, J.-J., "A Clothing Simulation System for Realistic Clothing and Mannequin," Computer-Aided Design and Applications, Vol.8, No.3, pp.335-344, 2011/01/01, 2011.
    [78] Garcia M. A., Sappa, A. D., and Basafiez, L., "Fast generation of adaptive quadrilateral meshes from range images," in Proceedings.of IEEE International Conference on Robotics and Automation, pp.2813-2818 vol.4, 1997.
    [79] Hormann K. and Greiner, G., "Quadrilateral remeshing," in Proceedings of Vision, Modeling, and Visualization, pp.153-162, 2000.
    [80] Rao S. S., Engineering optimization: Theory and practice, 3rd ed., pp. 348-349 Wiley Interscience, 1996.
    [81] International Organization for Standardization, "Garment construction and anthropometric surveys-body dimensions.", ISO reference no. 8559. Switzerland, 1989
    [82] Hilbert D. and Cohn-Vossen, S., Geometry and the Imagination (2nd ed.), New York: Chelsea, 1952.
    [83] 吳鴻昆, "不可展曲面攤平方式之探討," 國立中興大學機械工程研究所碩士論文, 2002.
    [84] 楊智傑, "電腦輔助立體服裝曲面之二維展開─非可展曲面之攤平與應用," 國立成功大學工業設計研究所碩士論文, 2002.
    [85] Miyoshi M., The dress making. Bunka Women's University, Tokyo: 2002.
    [86] Powell M. J. D., "An efficient method for finding the minimum of a function of several variables without calculating derivatives," The Computer Journal, Vol.7, No.2, pp.155-162, 1964.
    [87] Fang J.-J., Ding, Y., and Huang, S.-C., "Expert-based customized pattern-making automation: Part II. Dart design," International Journal of Clothing Science and Technology, Vol.20, No.1-2, pp.41-56, 2008.
    [88] 蘇月霞, "原型的觀念," 2014, < http://elite.tut.edu.tw/~t30014/blog?date=&page=1&node=000100020 >, Retrieved 2/21 2014.
    [89] 方晶晶、梁國賢, 不可展曲面攤平展開與曲面貼圖變形消除之方法, 中華民國發明專利 I284289.
    [90] AUTOCAD DXF Reference, <http://images.autodesk.com/adsk/files/autocad_2012_pdf_dxf-reference_enu.pdf>, Autodesk Inc., 2007.

    無法下載圖示 校內:2019-03-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE