簡易檢索 / 詳目顯示

研究生: 楊雅筑
Yang, Ya-Chu
論文名稱: 泵源調制Nd:YVO4雷射系統中光學渦流的混沌與極端事件
Chaos and extreme events of a vortex beam in a pump-modulation Nd:YVO4 laser
指導教授: 魏明達
Wei, Ming-Dar
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 62
中文關鍵詞: 光學渦流混沌極端事件調制訊號
外文關鍵詞: vortex, chaos, extreme events, modulation
相關次數: 點閱:130下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,主要探討了在具泵源條制的Nd:YVO4雷射系統中的非線性動力學及極端事件。我們在固定的共振腔體長度下,透過不同的調制頻率,將雷射輸出的光學渦流加以調制,並且透過調制後訊號的處理,整理出由週期進入混沌之路徑分岔圖、極端事件比例、kurtosis值等。我們透過這些實驗數據,觀察到了調制頻率遠離雷射的鬆弛震盪頻率時,具有更高的極端事件比例,且進入混沌的路徑也有所不同,並以此了解系統的非線性動力行為對調制訊號的影響。此外,我們也討論了不同空間上渦流光束的調制訊號,得知了在此系統裡的光學渦流存在不只一種模態,而我們對於泵源的調制作用於此兩個模態的調制能力也有所不同,造成了在不同的空間位置下非線性動態行為也有所不同。

    In this thesis, nonlinear dynamics and extreme events were explored in a Nd:YVO4 laser with pump modulation. At the fixed resonant cavity length, we adjusted modulation frequency to obtain the modulation signal in different conditions. Next, we sorted out the bifurcation, extreme event ratio, kurtosis value, etc. Through these experimental data, we observed that when the modulation frequency is far from the relaxation oscillation frequency, there is a higher ratio of extreme events, and the path towards chaos is also different. Also, by analyzed the modulation signals between different parts of vortex, we observed that there is more than one mode in this system, and nonlinear dynamic acting on these modes are also different.

    摘要 I SUMMARY II 誌謝 XI 目錄 XII 圖目錄 XIV 第 1 章 緒論 1 1.1 混沌與極端事件 1 1.2 光學渦流 6 1.3 研究動機與目的 9 第 2 章 原理 10 2.1 兩面鏡的雷射共振腔 10 2.2 以軸稜錐透鏡產生瓶形光束 14 2.3 光學渦流的軌道角動量 16 2.4 鬆弛震盪頻率與調制 19 2.5 雷射的非線性動態行為 21 2.6 光學雙穩態 24 2.7 雷射中的混沌現象與極端事件 28 第 3 章 實驗結果與討論 37 3.1 實驗架構與步驟 37 3.2 在固定的腔長下調控渦流光束 39 3.3 不同調制頻率下的混沌與極端事件 42 3.4 不同空間位置下的調制訊號 51 3.5 不同股數的調制訊號 55 第 4 章 結論與未來展望 57 4.1 結論 57 4.2 未來展望 58 第 5 章 參考文獻 59

    [1] E. Ott, Chaos in dynamical systems (Cambridge university press, 2002).
    [2] 劉秉正, 非線性動力學與混沌基礎 (東北師範大學出版社, 1994).
    [3] Midavaine, T.; Dangoisse, D.; Glorieux, P. Observation of chaos in a frequency-modulated CO2 laser. Phys Rev Lett, 55 (19), (1989).
    [4] Tang, D. Y.; Ng, S. P.; Qin, L. J.; Meng, X. L. Deterministic chaos in a diode-pumped Nd:YAG laser passively Q switched by a Cr4+:YAG crystal. Opt Lett, 28 (5), 325-327(2003).
    [5] P. Kjeldsen, "A sudden disaster-in Extreme Waves," Rogue Waves 2000, 19-35 (2001).
    [6] S. Aberg and G. Lindgren, "Height distribution of stochastic Lagrange ocean waves," Prob. Eng. Mech. 23, 359-363 (2008).
    [7] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves," Nature 450, 1054-1057 (2007).
    [8] C. Metayer, A. Serres, E. J. Rosero, W. A. Barbosa, F. M. de Aguiar, J. R. Leite, and J. R. Tredicce, "Extreme events in chaotic lasers with modulated parameter," Opt. Express 22, 19850-19859 (2014).
    [9] J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 82, 560-567 (1909).
    [10] R. A. Beth, “Mechanical Detection and Measurement of the Angular Momentum of Light,” Physical Review 50, 115-125 (1936).
    [11] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Physical Review A 45, 8185-8189 (1992).
    [12] D. G. Grier, “A revolution in optical manipulation,” nature 424, 810-816 (2003).
    [13] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313-316 (2001).
    [14] G. Foo, D. M. Palacios, and G. A. Swartzlander, “Optical vortex coronagraph,” Opt. Lett. 30, 3308-3310 (2005).
    [15] Y. Kozawa, D. Matsunaga, and S. Sato, “Superresolution imaging via superoscillation focusing of a radially polarized beam,” Optica 5, 86-92 (2018).
    [16] M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Optics communications 112, 321-327 (1994).
    [17] N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A 25, 1642-1651 (2008).
    [18] N. Heckenberg, R. McDuff, C. Smith, and A. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221-223 (1992).
    [19] S. Zheng, and J. Wang, “Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings,” Scientific Reports 7, 40781 (2017).
    [20] Y. Zhao, Z. Wang, H. Yu, S. Zhuang, H. Zhang, X. Xu, J. Xu, X. Xu, and J. Wang, “Direct generation of optical vortex pulses,” Applied Physics Letters 101, 031113 (2012).
    [21] J. W. Kim, and W. A. Clarkson, “Selective generation of Laguerre–Gaussian (LG0n) mode output in a diode-laser pumped Nd:YAG laser,” Optics Communications 296, 109-112 (2013).
    [22] G. Li, K. Xia, Z. Wang, H. Shen, A. Shirakawa, K.-i. Ueda, and J. Li, “Conical refraction, for annular pumping of an efficient vortex Nd: YAG laser,” Laser Physics Letters 14, 075001 (2017).
    [23] D. Chen, Y. Miao, H. Fu, H. He, J. Tong, and J. Dong, “High-order cylindrical vector beams with tunable topological charge up to 14 directly generated from a microchip laser with high beam quality and high efficiency,” APL Photonics 4, 106106 (2019).
    [24] J. T. Verdeyen, Laser electronics (Prentice Hall, 1995).
    [25] J. Durnin, J. Miceli Jr, and J. Eberly, “Diffraction-free beams,” Physical review letters 58, 1499 (1987).
    [26] G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” JOSA A 6, 150-152 (1989).
    [27] A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” JOSA A 6, 1748-1754 (1989).
    [28] J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Applied optics 27, 3959-3962 (1988).
    [29] K. Ait-Ameur, and F. Sanchez, “Gaussian beam conversion using an axicon,” Journal of modern optics 46, 1537-1548 (1999).
    [30] X. Wei, C. Liu, L. Niu, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range,” Applied Optics 54, 10641-10649 (2015).
    [31] Beth, R. A. Mechanical Detection and Measurement of the Angular Momentum of Light. Physical Review, 50 (2), 115-125(1936).
    [32] JD Jackson, Classical Electrodynamics (Wiley, New York, ed. 2, 1975), pp. 155–158.
    [33] S. Qiu, T. Liu, Z. Li, C. Wang, Y. Ren, Q. Shao, and C. Xing, “Influence of lateral misalignment on the optical rotational Doppler effect,” Applied Optics 58, 2650-2655 (2019).
    [34] Sephton, A. Dudley, and A. Forbes, “Revealing the radial modes in vortex beams,” Applied optics 55, 7830-7835 (2016).
    [35] W. Koechner, et al., Solid-State Laser Engineering(ed 4, 1996).
    [36] Wei, M.-D.; Hsieh, W.-F. Cavity-configuration-dependent nonlinear dynamics in Kerr-lens mode-locked lasers. J. Opt. Soc. Am. B, 17 (8), 1335-1342 (2000).
    [37] Lee, C. H.; Yoon, T. H.; Shin, S. Y. Period doubling and chaos in a directly modulated laser diode. Applied Physics Letters, 46 (1), 95-97 (1985).
    [38] Wei, M.-D.; Chen, C.-H.; Wu, H.-H.; Huang, D.-Y.; Chen, C.-H. Chaos suppression in the transverse mode degeneracy regime of a pump-modulated Nd:YVO4 laser. Journal of Optics A: Pure and Applied Optics, 11 (4), 045504 (2009).
    [39] W. Jordan, and P. Smith, Nonlinear Ordinary Differential Equations: an Introduction for Scientists and Engineers(Oxford University Press, 2007).
    [40] Lamb, W. E. Theory of an Optical Maser. Physical Review, 134 (6A), A1429-A1450(1964).
    [41] S. McCall, H. Gibbs, G. Churchill, and T. Venkatesan, “Optical nonlinearity in the sodium vapor,” Bull. Am. Phys. Soc 20, 636-641(1975).
    [42] Bonifacio, R.; Gronchi, M.; Lugiato, L. A. Photon statistics of a bistable absorber. Physical Review A, 18 (5), 2266-2279 (1978).
    [43] Luo, L.; Tee, T. J.; Chu, P. L. Bistability of erbium-doped fiber laser. Optics Communications, 146 (1), 151-157 (1998).
    [44] Arecchi, F. T.; Meucci, R.; Puccioni, G.; Tredicce, J. Experimental Evidence of Subharmonic Bifurcations, Multistability, and Turbulence in a Q-Switched Gas Laser. Physical Review Letters, 49 , 1217-1220(1982).
    [45] W. Klische, H. Telle, and C. Weiss, "Chaos in a solid-state laser with a periodically modulated pump," Opt. Lett. 9, 561-563 (1984).
    [46] Nagali, E.; D’Ambrosio, V.; Sciarrino, F.; Cabello, A. Experimental Observation of Impossible-to-Beat Quantum Advantage on a Hybrid Photonic System. Physical Review Letters, 108 (9), 090501(2012).

    下載圖示 校內:2025-07-28公開
    校外:2025-07-28公開
    QR CODE