簡易檢索 / 詳目顯示

研究生: 陳彥傑
Chen, Yen-Chieh
論文名稱: 基於無鉛鈣鈦礦之指叉式電極光檢測器與其操作溫度及感測層厚度之影響
Effects of sensing layer thickness and operating temperature on lead-free perovskite based interdigitated photodetectors
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 智慧半導體及永續製造學院 - 半導體製程學位學程
Program on Semiconductor Manufacturing Technology
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 104
中文關鍵詞: 指叉式電極鹵素鈣鈦礦材料光檢測器
外文關鍵詞: Interdigitated electrode, Halide perovskite,, Photodetectors
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Abstract IV Table of Contents XI List of Tables XVIII Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Types and Materials of Photodetectors 1 1.1.2 Transition from Oxide-Based to Halide-Based Perovskites 2 1.1.3 Advantages of Cs2AgBiBr6 (CABB) Perovskites 3 1.2 Motivation 5 1.2.1 Existing Technology Challenges 5 1.2.2 Leveraging Material and Structural Advantages 8 1.3 Organization of the Thesis 11 Chapter 2 Literature Review 13 2.1 Historical review of interdigitated electrodes 13 2.1.1 1950s - 1960s: Early Applications in Electronics 13 2.1.2 1970s: Gas Sensors and Chemical Sensing 14 2.1.3 1980s: Polymers and Biosensors 15 2.1.4 1990s: Microfabrication and MEMS Technology 15 2.1.5 2000s: Nanotechnology and Enhanced Sensitivity 16 2.1.6 2010s: Flexible Electronics and Wearable Sensors 16 2.1.7 2020s: Advanced Applications and Multifunctionality 17 2.1.8 Key Advantages and Challenges: 17 2.2 Overview of Perovskite Materials 19 2.2.1 Review of Perovskite Materials 19 2.2.2 Halide Perovskites 21 2.2.3 All-Inorganic Perovskites: 22 2.3 Related Parameters of Photodetectors 25 2.3.1 Photoresponsivity (R) 25 2.3.2 Detectivity (D*) 25 Chapter 3 Experimental Procedure 27 3.1 Fabrication Equipment 27 3.1.1 Oven 27 3.1.2 Direct Current Sputtering (DC Sputtering) 28 3.1.3 Magnetic Heating Stirrer 29 3.1.4 Thermal Evaporation System 30 3.2 Material Analysis Equipment 32 3.2.1 Atomic Force Microscopy (AFM) 32 3.2.2 X-ray Diffraction (XRD) 33 3.2.3 X-ray Photoelectron Spectroscopy (XPS) 35 3.2.4 Energy-dispersive X-ray Spectroscopy (EDS) 37 3.2.5 Focused Ion Beam (FIB) 39 3.2.6 Transmission Electron Microscopy (TEM) 40 3.3 Electrical Analysis Equipment 43 3.3.1 Agilent B1500A 43 3.4 Optical Analysis Equipment 45 3.4.1 Absorption Spectroscopy 45 3.5 Fabrication Process 47 3.5.1 Substrate Preparation 47 3.5.2 Deposition of interdigitated electrode 48 3.5.3 Deposition of Cs2AgBiBr6 Thin Film 49 Chapter 4 Results and Discussion 51 4.1 Photo-electronic Properties of the Sensor 51 4.2 Mechanism interpretation 52 4.3 Temperature Effect on Photo-electronic Properties 53 4.4 Cs2AgBiBr6 Thickness Effect on Photo-electronic Properties 55 4.5 Response Speed of Photodetector 59 4.6 Comparison of pristine and improved device 61 4.7 Physical Properties of the photodetector 62 4.7.1 Scanning Electron Microscopy (SEM) 62 4.7.2 Atomic Force Microscopy (AFM) Analysis 65 4.7.3 Cross-sectional TEM image of Device 67 4.7.4 Energy Dispersive X-ray Spectroscopy (EDS) analysis 69 4.7.5 Conductive Atomic Force Microscopy (C-AFM) analysis 73 4.7.6 X-ray Diffraction (XRD) analysis 75 4.7.7 X-ray Photoelectron Spectroscopy (XPS) analysis 77 Chapter 5 Conclusion 79 Chapter 6 Future Works 81 References 82

    [1] G. M. Ali, J. C. Moore, A. K. Kadhim, and C. Thompson, "Electrical and optical effects of Pd microplates embedded in ZnO thin film based MSM UV photodetectors: A comparative study," Sensors and Actuators A: Physical, vol. 209, pp. 16-23, 2014.
    [2] W. Tian et al., "Flexible SnO 2 hollow nanosphere film based high-performance ultraviolet photodetector," Chemical Communications, vol. 49, no. 36, pp. 3739-3741, 2013.
    [3] P. K. Yadav, B. Ajitha, Y. A. K. Reddy, and A. Sreedhar, "Recent advances in development of nanostructured photodetectors from ultraviolet to infrared region: A review," Chemosphere, vol. 279, p. 130473, 2021.
    [4] Z. Zhang et al., "Stable and highly efficient photocatalysis with lead‐free double‐perovskite of Cs2AgBiBr6," Angewandte Chemie International Edition, vol. 58, no. 22, pp. 7263-7267, 2019.
    [5] H. Lei, D. Hardy, and F. Gao, "Lead‐free double perovskite Cs2AgBiBr6: fundamentals, applications, and perspectives," Advanced Functional Materials, vol. 31, no. 49, p. 2105898, 2021.
    [6] N. Liu and Y. Gao, "Recent progress in micro‐supercapacitors with in‐plane interdigital electrode architecture," Small, vol. 13, no. 45, p. 1701989, 2017.
    [7] A. V. Mamishev, K. Sundara-Rajan, F. Yang, Y. Du, and M. Zahn, "Interdigital sensors and transducers," Proceedings of the IEEE, vol. 92, no. 5, pp. 808-845, 2004.
    [8] S. v Náray-Szabó, "Der Strukturtyp des Perowskits (CaTiO3)," Naturwissenschaften, vol. 31, pp. 202-203, 1943.
    [9] H. Kay and P. Bailey, "Structure and properties of CaTiO3," Acta Crystallographica, vol. 10, no. 3, pp. 219-226, 1957.
    [10] B. Wang, X. Xiao, and T. Chen, "Perovskite photovoltaics: a high-efficiency newcomer to the solar cell family," Nanoscale, vol. 6, no. 21, pp. 12287-12297, 2014.
    [11] N. S. Arul and V. D. Nithya, Revolution of Perovskite. Springer, 2020.
    [12] M. Anaya, G. Lozano, M. E. Calvo, and H. Míguez, "ABX3 perovskites for tandem solar cells," Joule, vol. 1, no. 4, pp. 769-793, 2017.
    [13] L. Protesescu et al., "Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut," Nano letters, vol. 15, no. 6, pp. 3692-3696, 2015.
    [14] B. Conings et al., "Intrinsic thermal instability of methylammonium lead trihalide perovskite," Advanced Energy Materials, vol. 5, no. 15, p. 1500477, 2015.
    [15] J.-H. Im, J. Chung, S.-J. Kim, and N.-G. Park, "Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3) PbI3," Nanoscale research letters, vol. 7, pp. 1-7, 2012.
    [16] G. S. H. Thien et al., "Recent advances in halide perovskite resistive switching memory devices: A transformation from lead-based to lead-free perovskites," ACS omega, vol. 7, no. 44, pp. 39472-39481, 2022.
    [17] F. Zhang et al., "Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology," ACS nano, vol. 9, no. 4, pp. 4533-4542, 2015.
    [18] M. Usman and Q. Yan, "Recent advancements in crystalline Pb-free halide double perovskites," Crystals, vol. 10, no. 2, p. 62, 2020.
    [19]“NCKU, Core Facility Center”, [Online]. Available: https://ctrmostcfc.ncku.edu.tw [accessed Jul. 11, 2023].
    [20] J. Long, A. Nand, and S. Ray, "Application of spectroscopy in additive manufacturing," Materials, vol. 14, no. 1, p. 203, 2021.
    [21] A. M. Mueller, J. Plenge, S. R. Leone, S. E. Canton, B. S. Rude, and J. D. Bozek, "Core electron binding energy shifts of AlBr3 and Al2Br6 vapor," Journal of Electron Spectroscopy and Related Phenomena, vol. 154, 2006.

    無法下載圖示 校內:2029-08-27公開
    校外:2029-08-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE