簡易檢索 / 詳目顯示

研究生: 黃鴻瑋
Huang, Hong-Wei
論文名稱: 電子構裝後硬化製程翹曲之模擬
Warpage Modeling of Electronic Package During the Post-Mold Curing Process
指導教授: 屈子正
Chiu, Tz-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 119
中文關鍵詞: 封膠黏彈性本構模型化學老化翹曲
外文關鍵詞: molding compound, viscoelastic constitutive model, chemical aging, warpage
相關次數: 點閱:186下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 消費性電子產品近年來快速發展,具備多樣性的功能。積體電路元件走向輕、薄、短、小的趨勢,封裝體內部互連線路密度也隨之變高。為對應元件中縣路及訊號密度的提高,在封裝體元件與系統主機板間之連結,亦是以陣列式互連技術為主要發展,然而封裝體製程中若產生過大的翹曲將導致封裝體與其他元件之間連結的困難,降低產品生產良率並且在長時間使用情況下,翹曲所對應的殘留應力可能造成元件失效提早發生。傳統上分析封裝體翹曲的產升主要歸因於不同材料之間熱膨脹係數的不匹配,但由於現代封裝產品大量使用熱固性高分子材料做為黏著、保護及基材,且熱固性高分子材料在不同的溫度下會發生硬化、物理與化學老化反應。這些反應都會造成高分子材料體積上的變化,進而導致封裝體的翹曲。
    此外,傳統上在翹曲分析中多假設高分子材料具有線彈性行為,但在實際情況下,高分子材料具有明顯的黏彈性機械行為,且其性質多半與時間、溫度、硬化度、老化效應具有關連性,為了達到準確封裝體的翹曲量預測,正確地描述封裝體上使用之高分子材料的本構行為是必然的。
    本文中將針對球柵陣列封裝體中之封膠材料以實驗方法建立黏彈性本構模型,其中包含建立之封膠熱機械行為,考慮封裝硬化與化學老化效應以及玻纖基板之黏彈本構行為,用來模擬製程中封裝體翹曲量的變化,並與陰影疊紋實驗做一驗證。

    Warpage is one of the most critical issues in electronic industry, it has strong implication on the board reflow assembly yields for area-array packages, excessive warpage may lead to difficulties of electrical interconnection. Package warpage typically occurs after the post-mold curing process partically due to the CTE mismatch among various packaging constituents such as silicon die, molding compound and multilayer substrate. In addition, during the packaging processes the molding compound curing shrinkage, physical and chemical aging would occur. These processes and the curing-dependent viscoelastic behavior would affect molding compound thermomechanical and metric properties. In order to accurately predicting the warpage and stress in IC packages, it is critical to develop a cure-time-temperature dependent model and chemical aging model for describing the constitutive behavior of molding compound.
    In this thesis, the experimental characterizations for developing the models for curing and chemical aging effects, and the viscoelastic constitutive behavior of organic substrate are presented. By using these models, finite element analysis are conducted to simulate the warpage evolution during post-mold curing process. Shadow Moiré experiments are also conducted to measure package warpage and compared to the simulation results.

    摘要.................................................... I 英文摘要...............................................III 致謝....................................................V 目錄....................................................VI 表目錄..................................................X 圖目錄..................................................XI 符號說明................................................XVI 第一章 緒論.............................................. 1 1.1電子封裝製程簡介.......................................2 1.2研究動機與方法.........................................4 1.3文獻回顧..............................................5 1.3.1硬化反應............................................5 1.3.2物理與化學老化.......................................7 1.3.3黏彈性行為..........................................8 1.3.4翹曲與應力分析......................................10 1.4研究目的.............................................12 1.5本文架構.............................................12 第二章 理論基礎..........................................14 2.1熱固性高分子材料之硬化反應..............................14 2.1.1硬化動力學模型......................................15 2.2高分子材料之線黏彈性行為...............................17 2.2.1時間相關之行為及基本材料試驗.........................17 2.2.2線黏彈性材料之基本數學模型...........................19 2.2.3線黏彈性材料之本構關係..............................21 2.2.4時間-溫度與時間-硬化重疊原理.......................28 2.3高分子材料硬化反應與化學老化現象之影響..................30 第三章 封膠熱機械性質的量測與黏彈本構模型的建立.............32 3.1封膠之熱示差掃瞄分析驗................................32 3.2封膠之熱膨脹係數......................................34 3.3封膠黏彈性本構模型的建立...............................35 3.4化學老化相關之熱機械性質實驗............................37 3.4.1 化學老化相關之DSC實驗...............................37 3.4.2 化學老化相關之DMA實驗結果與討論......................39 3.4.3 長時間體積變化量測實驗...............................40 3.5比較與討論............................................46 第四章 有機玻璃纖維板熱機械性質的量測與黏彈性本構模型的建立.... 48 4.1熱膨脹係數與熱機械分析實驗.............................. 48 4.2鬆弛模數的量測與黏彈性本構模型的建立.....................49 4.2.1動態機械分析實驗及對應黏彈性模型.......................49 4.2.2鬆弛實驗及對應黏彈性模型..............................55 4.3比較與討論............................................60 第五章 陰影疊紋實驗....................................... 61 5.1後硬化製程翹曲量測..................................... 61 5.1.1金屬雙材料試件後硬化製程翹曲量測...................... 61 5.1.2封裝體啞片試件後硬化製程翹曲量測...................... 65 5.2完全硬化試片翹曲量測................................... 67 5.3特殊後硬化溫度與時間翹曲量測............................ 69 5.4結果比較與討論........................................ 82 第六章 翹曲有限元素模型................................... 83 6.1幾何模型建構及網格化................................... 83 6.2材料性質............................................. 86 6.3模擬結果及實驗驗證..................................... 87 6.3.1完成後硬化之試件翹曲分析..............................87 6.3.2後硬化製程中試件翹曲分析..............................89 6.4比較與討論............................................ 96 第七章 結論與未來研究方向.................................. 97 7.1結論.................................................97 7.2未來研究方向.......................................... 98 參考文獻................................................ 99 附錄A 陰影疊紋法原理.................................103 附錄B 封膠材料本構模型及製程步驟ANSYS程式...............105

    [1]http://www.amkor.com./images/products/tssop_xsection.jpg
    [2]http://www.amkor.com./images/products/pbga-cross.gif
    [3]http://www.amkor.com./images/products/fccsp_xsection.jpg
    [4]R. B. R. van Silfhout, J. G. J. Beijer, K. Zhang, and W. D. van Driel, “Modelling methodology for linear elastic compound modelling versus visco-elastic compound modelling,” Proc. 6th. Int. Conf. Therm. and Mech. Simul. Exp.Microelectron. MicroSyst., EuroSimE2005, Berlin, Germany, 2005 p. 483.
    [5]M. R. Kamal and S. Sourour, “ Kinetics and thermal characterization of thermoset cure, ” Polymer Engineering and Science, Vol. 13, pp. 59-64, 1973.
    [6]M. R. Kamal and M. E. Ryan, “ The behavior of thermosetting compound in injection molding cavities, ” Polymer Engineering and Science, Vol. 20, pp.859-867, 1980.
    [7]R. R. Hill Jr, S. V. Muzumdar, and L. James Lee,“ Analysis of volumetric changes of unstaturated polyester resins during curing, ” Polymer Engineering and Science, Vol. 35, pp. 852-859, 1995.
    [8]H. Yu, S. G. Mhaisalkar, and E. H. Wong, “ Cure shrinkage measurement of non-conductive adhesives by means of a thermomachanical analyzer, ” Journal of Electronic Materials, Vol. 34, pp. 1177-1182, 2005.
    [9]M. E. Nichols, S. S. Wang, and P. H. Geil, “ Creep and physical aging in a polyamideimide carbon fiber composite, ” Journal of Macromolecular Science, Vol. B29, pp. 303-336, 1990.
    [10]J. Mijovic, and R. C. Liang, “ The effect of pressure and temperature on time-dependent changes in graphite/epoxy composites below the glass transition, ” Polymer Engineering and Science, Vol. 24, pp. 57-66, 1984.
    [11]D. J. Belton, “ The effect of post-mold curing upon the microstructure of epoxy molding compounds, ” IEEE Transactions on components, Hybrids, and Manufacturing Technology, Vol. CHMT-10, pp. 358-363, 1987.
    [12]H. K. Kung, A. Skontorp, and S. S. Wang, “ High-temperature physical and chemical aging in carbon fiber reinforced polyimide composites : experiment and theory, ” The American Society of Mechanical Engineers, Vol. 56, pp. 193-202, 1995.
    [13]J. D. Ferry, Viscoealstic Properties of Polymer, 3rd edtion, John Wiley and Sons Inc., New York, 1980.
    [14]D. J. Plazek and I. C. Chay, “ The evolution of the viscoelastic retardation spectrum during the development of an epoxy resin network, ” Journal of Polymer Science: Part B: Polymer Physics, Vol. 29, pp. 17-29, 1991.
    [15]Y. K. Kim and S. R. White, “ Stress relaxation behavior of 3501-6 epoxy resin during cure, ” Polymer Engineering and Science, Vol. 36, pp. 2852-2862, 1996.
    [16]P. Shrotriya and N. R. Sottos, “ Creep and relaxation behavior of wovwn glass/epoxy substrate for multilayer circuit board applications, ” Polymer Composites, Vol. 19, pp. 567-578, 1998.
    [17]L. C. Brison and T. S. Gates, Viscoelastic and Aging of Polymer Matrix Composites, Vol. 2: Comprehensive Composite Material, Pergamon Press, 2006.
    [18]D. G. Yang, K. M. B. Jansen, L. J. Ernst, G. Q. Zhang, H. J. L. Bressers, and J. H. J. Janssen, ” Effect of filler concentration of rubbery shear and bulk modulus of molding compound, ” Microelectron. Reliab., Vol. 47, pp. 233-239, 2007.
    [19]K. K. Kar, S.D. Sharma, P. Kumar, and A. Mohanty, “ Stress relaxation behavior of glass fiber-reinforced polyester composites prepared by the newly proposed rubber pressure molding, ” Polymer Composites, Vol. 29, pp. 1077-1097, 2008.
    [20]S. Pandini, and A. Pegoretti, “ Time, temperature and strain effects on viscoelastic poisson s ratio of epoxy resins, ” Polymer Engineering and Science, Vol. 48, pp. 1434-1441, 2008.
    [21]R. C. Dunne, An Integrated Process Modeling Methodology and Module for Sequential Multilayered High-Density Substrate Fabrication for Microelectronic Packages, Ph. D. Dissertation, Georgia Technology Institute, 2000.
    [22]洪立群,2004,IC 封裝元件翹曲分析之研究,博士論文,國立成功大學。
    [23]D. G. Yang, K. M. B. Jansen, L. J. Ernst, G. Q. Zhang, W. D. van Drief, and H. J.L. Bressers, “ Modeling of cure-induced warpage of plastic ic packages, ” Proc. 5th. Int. Conf. Therm. and Mech. Simul. Exp. Microelectron. MicroSyst.,EuroSimE2004, Brussels, Belgium, pp. 33-40, 2004.
    [24]R. B. R. van Silfhout, J. G. J. Beijer, K. Zhang, and W. D. van Driel, “ Modelling methodology for linear elastic compound modelling versus visco-elastic compound modelling, ” Proceedings of the 6th. Int. Conf. Therm. and Mech. Simul. Exp.Microelectronic MicroSystem, EuroSimE2005, Berlin, Germany, pp. 483-489, 2005.
    [25]M. Zarrelli, I. K. Partidge, and A. D’Amore, ” Warpage induced in bi-meterial specimens: Coefficient of thermal expansion, chemical shrinkage and viscoelastic modulus evolution during cure, ” Composite Part A: Applied Science and Manufacturing,Vol. 37, pp. 565-570, 2006.
    [26]J. D. Vreugd, K. M. B. Jansen, L. J. Ernst, C. Bohm, A. Kessler, H. Preu, “ Effects of molding compound cure on warpage of electronic packages, ” 10th Electronics Packaging Technology Conference, EPTC 2008, pp. 675-682, 2008.
    [27]龔哲立,2009,電子構裝封膠之黏彈性模型及其製成翹曲之模擬,碩士論文,國立成功大學。
    [28]ANSYS, ver. 11.0, ANSYS Inc., 2007.
    [29]MATLAB, R2009a, The MathWorks, Inc., 2009.
    [30]H. F. Brinson, L. C. Brinson, Polymer engineering science and viscoelasticity:An introduction, Springer, Boston, MA , 2008.

    下載圖示 校內:2013-08-27公開
    校外:立即公開
    QR CODE