簡易檢索 / 詳目顯示

研究生: 蔡宏杰
Tsai, Hung-Chieh
論文名稱: 以鈮酸鋰晶體研製光電電磁場感測器
Optical Electric Field Sensor by LiNbO3
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 69
中文關鍵詞: 馬氏干涉儀鈮酸鋰感測器
外文關鍵詞: LiNbO3, Sensor, Mach-Zehnder interferometer
相關次數: 點閱:55下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文採用z切鈮酸鋰鈦擴散製程,以馬氏干涉儀架構作為強度調制器,並在其上直接製作一平面天線,免除往後在封裝時才加入感應天線,其體積過大以及可能會發生元件間接合強度不夠之情形;再透過良好的研磨拋光以及光纖直接耦合之封裝,來使插入損耗、驅動電壓、消光比達到實用化。使以鈮酸鋰製作光電電磁場感測器更具應用價值。

     In this thesis, the Ti diffusion process on Z-cut LiNbO3 was made and the Mach-Zehnder interferometer was applied to be the intensity modulator. The plane antenna was directly fabricated with the electrodes to suppress the volume and strengthen the connection between each part of the device. After being ground and polished well, the device was coupled with fiber directly to make the insertion loss, driven voltage, extinction ratio practical. Therefore the optical electric field sensor made by LiNbO3 can become more valuable in application.

    Contents Abstract (Chinese) i Abstract (English) ii Acknowledge   iii Contents   iv Figure and Table Captions v Chapter1 Introduction   1 Chapter2 Theory 2.1 Electro-optical effect of LiNbO3 3 2.2 Ti diffusion for waveguide    6 2.3 Mach-Zehnder modulator       10 2.4 Traveling-wave electrode      11 2.5 Folded monopole       14 Chapter3 Device Process 3.1 Light waveguide       16 3.2 Buffer layer       17 3.3 Thick electrode       18 3.4 Antenna        19 3.5 Package        20 Chapter4 Measurement Result 4.1 Mach-Zehnder modulator        24 4.2 Antenna        26 4.3 Field sensor       27 Chapter5 Conclusion     29 Reference     31

    Reference

    [1] P. S. Cross, R. A. Baumgatner, and B. H. Kolner, “Microwave integrated Optical modulator,” Appl. Phys. Lett., vol. 44, p.486, 1984.
    [2] R.A. Beaker, “Traveling-wave electro-optic modulator with maximum bandwidth-length product,” Appl. Phys. Lett., vol. 43, p.998, 1984.
    [3] A. Yariv and P. Yeh., “Optical Waves in Crystal,” New York : John Wiley and Sons, 1983.
    [4] 李俊奇, “雙重擴散式波導管之研究,” 中央大學博士論文, 1994.
    [5] L. Tsonev, “Ti:LiNbO3 optical waveguides,” Appl. Phys., vol.24, p.205, 1981.
    [6] S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refraction index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Tech., vol.5, p.700, 1987.
    [7] K. Kobota, J. Noda, and O. Mikami, “Traveling wave optical modulator using a directional coupler LiNbO3 waveguide” IEEE J. Quantum. Electron., vol.16, p.754, 1980.
    [8] K. Atsuki, and E. Yamashita, ”Transmission line aspects of the design of broad-band electrooptic traveling-wave modulators,” J. Lightwave Tech., vol.5, p.316, 1987.
    [9] W.L. Stutzman and G.A. Thiele, Antenna Theory and Design, ed., John Wiley, New York, p.175, 1998. 2nd
    [10] Chen-To Tai, “Theory of terminated monopole,”IEEE Trans. Antennas Propagat., vol.32, p.408, Apr 1984.
    [11] M. Masuda, and J.Koyama, “Effects of a buffer layer on TM modes in a metal-clad optical waveguide using Ti-diffused LiNbO3 C-plate,” Appl. Opt., vol.16, p.2294, 1977.
    [12] E. Voges, and A. Neyer, “Integrated-Optic devices on LiNbO3 for optical communication,” J. Lightwave Tech., vol.5, p.1229, 1987.
    [13] K. Sreenivas, T. S. Rao, A. Mansingh, and S. Chandra, “Preparation and characterization of RF Sputtered indium tin oxide films,” J. Appl. Phys., vol.57, p.384, 1985.
    [14] 黃振庭,”緩衝層影響鈮酸鋰光波導元件傳播損耗之研究,” 中央大學碩士論文, 1997.
    [15] R. C. Alferness, C. H. Joyner, L. L. Buhl, and S. K. Korotky, “High-speed Traveling-Wave Directional Coupler Switch/Modulator for λ= 1.32μm, ” IEEE J. Quantum. Electron., vol.19, p.1339, 1983.
    [16] H. Nagata, and N. Mitsugi, “Mechanical Reliability of LiNbO3 optical modulators hermetically sealed in stainless steel packages,” Opt. Fiber Technol., vol.2, p.216, 1996.

    下載圖示 校內:立即公開
    校外:2005-08-31公開
    QR CODE