簡易檢索 / 詳目顯示

研究生: 陳一賢
Chen, I-Hsien
論文名稱: 舟月韌帶之生物力學探討
Biomechanical Evaluation of Scapholunate Ligament
指導教授: 張志涵
Chang, Chih-Han
共同指導教授: 蕭志坤
Hsiao, Chih-Kun
林鼎勝
Lin, Ting-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 74
中文關鍵詞: 舟月韌帶生物力學數位影像比對法黏彈性
外文關鍵詞: Scapholunate Ligament, Biomechanical properties, Digital image correlation, Viscoelastic property
相關次數: 點閱:104下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 舟月韌帶是最主要維持腕關節穩定的韌帶,然而由於其幾何形狀複雜,以致使舟月韌帶之生物力學性質尚未有明確之量化數據。此外,回顧先前文獻已有許多學者做過舟月韌帶在不同負荷下舟月韌帶之結構勁度,但是其量測之力量位移的數據都是單一點的量測,單一點的量測並不能有效代表舟月韌帶受力後的反應;此外,傳統的量測系統並不能得到足夠的實驗數據,來探討舟月韌帶之力學行為。因此,本研究藉由數位影像比對技術,期望建構出一套量測舟月韌帶之實驗模式,並探討在平行於舟月韌帶纖維方向施加張力,及在垂直於纖維方向施加剪力之力學行為。本研究分為兩個部份,第一部份是利用成犬前肢之舟月韌帶,進行舟月韌帶在剪力與張力之力學分析,第二部份則使用數位影像比對法計算舟月韌帶受力後位移並與有限元素模擬進行初步比對。
    本實驗結果顯示舟月韌帶具有非線性且黏彈性之力學行為,舟月韌帶以不同的應變速率,其勁度及鬆弛率都會隨著應變速率的增加而增加,然而應變速率改變2000%,其在勁與鬆弛在最大之增加量僅有62.84%。使用數位影像比對法用來研究舟月韌帶之表面位移,數位影像比對法搭配顯微鏡能提供量測軟組織之位移。倘若欲將數位影像比對法運用於舟月韌帶之定量分析,必須將在實驗與模擬比對位置所造成的偏差降低。若能將對位問題克服,想必可以使數位影像比對法與有限元素之比對更佳完善。

    Scapholunate ligament (SLL) has been known as a major ligament to retain the carpal stability. However, because of its complex geometry, the biomechanical properties of SLL are not clearly understood yet. Even though previous studies have conducted mechanical researches on SLL under different loadings, their focus was on measuring the structure stiffness of SLL. Whereas, the load-displacement curve derived from merely measuring a single point is unable to represent SLL properties under loading. Traditional mechanical measurement is difficult to obtain enough information for evaluating SLL material properties. Therefore, this study aimed to construct an experimental model to evaluate SLL mechanical response by means of digital image correlation (DIC) technology. First, the properties of SLL, obtained from adult canine, were evaluated from traditional approach. Then DIC was applied on one specimen to demonstrate its ability. Also, finite element analysis was employed to compare with the DIC outcome in a linear sense. The loads applied included both tension, loading parallel the SLL fiber direction, and shear, loading vertical to the SLL fiber direction.
    The results showed that adult canine SLL posses a viscoelastic property and the stiffness and relaxation rate increased as the strain rate increased. However this strain rate effect is limited (2000% vs. 62.84% at most). With the aided of DIC, the displacement distribution on an area region could be obtained. Integrate with digital microscope, DIC method is capable to study the deformation of soft-tissue such as SLL. DIC provides qualitative and quantitative outcome for more detailed analysis in biomaterial. However, based on the experience of this study, better registration is required for finite element simulation to compare with DIC outcome.

    Contents 中文摘要............................................................................................................................... I Abstract ...............................................................................................................................III 誌謝......................................................................................................................................V Contents................................................................................................................................V List of Figures ...................................................................................................................VIII List of Tables......................................................................................................................XII Chapter1 Introduction ............................................................................................................1 1.1 Overviews of Scapholunate Ligament .................................................................... 1 1.2 Literature Reviews .................................................................................................. 2 1.2.1 Anatomy..........................................................................................2 1.2.2 Treatment ........................................................................................5 1.2.3 The experiment of scapholunate ligament ......................................5 1.3 Motivation and Objectives .....................................................................................11 Chapter 2 Materials and Methods ........................................................................................12 2.1 Experiment ............................................................................................................ 13 2.1.1 Specimen preparation and experimental instruments ...................13 2.1.2 Experimental setup........................................................................17 2.1.3 Test procedures..............................................................................21 2.1.4 Analytical Methods .......................................................................25 2.2Finite Element Model............................................................................................. 29 2.2.1 Imaging proceeding and finite element model construction.........29 2.2.2 Material properties of 3D model of scapholunate ligament..........29 2.2.3 The boundary conditions...............................................................30 Chapter 3 Results .................................................................................................................31 3.1 Dimension of scapholunate ligament .................................................................... 31 3.2 Stiffness ................................................................................................................. 34 3.3 Relaxation rate....................................................................................................... 37 3.4 Failure modes ........................................................................................................ 39 3.5 The error of digital image correlation ................................................................... 41 3.6 Displacement measurement from DIC.................................................................. 44 3.7 DIC verse FEA...................................................................................................... 48 Chapter 4 Discussion ...........................................................................................................50 4.1 The behavior of the SLL under tension and shear ................................................ 50 4.2 Experimental device and Variability ..................................................................... 52 4.3 The displacement measure of digital image correlation........................................ 53 VII 4.4 The comparing of DIC with FEA.......................................................................... 56 4.5 Error source during test ......................................................................................... 59 4-6 Limitations ............................................................................................................ 61 Chapter 5 Conclusion...........................................................................................................62 References ............................................................................................................................63

    1. Wang, H., Werner, F. W. , An innovative application of 3D CAD for human wrist ligamentous inhury diagnosis. Internation Journal of engineering research &innovation, 2010. 2(1): p. 5-11.
    2. Richard H. Gelberman, W.P.C., III and Robert M. Szabo, Carpal Instability. Te Journal of Bone Joint Surgery, 2000. 82(578): p. 578-594.
    3. Berger, R.A., Imeada,T., Berglund,L., An,K.N., Constraint and Material Properties of the Subregions of the Scapholunate Interosseous Ligament. Journal of Hand Surgery, 1999. 24(5): p. 953-962.
    4. Mitsuyasu, H., Patterson, R.M.,Shah, M. A.,Buford, W. L., Iwamoto ,Y., Viegas, S. F. , The role of the dorsal intercarpal ligament in dynamic and static scapholunate instability. Journal of Hand Surgery, 2004. 29(2): p. 279-288.
    5. Zdero, R., Olsen, M.,Elfatori, S.,Skrinskas, T.,Nourhosseini, H.,Whyne, C.,Schemitsch, E. H.,von Schroeder, H., Linear and Torsional Mechanical Characteristics of Intact and Reconstructed Scapholunate Ligaments. Journal of Biomechanical Engineering, 2009. 131(4): p. 041009-1-041009-7.
    6. Marieb, E.N., Mallatt,J. , Wilhelm,P. B., ed. Human Anatomy. Fifth ed. 2008, Benjamin Cummings: San Francisco. 189-221.
    7. Berger, R.A., The gross and histologic anatomy of the scapholunate interosseous ligament. Journal of Hand Surgery 1996. 21(2): p. 170-178.
    8. Zcirc, et al., Detailed anatomy of the antebrachiocarpal joint in dogs. The Anatomical Record, 1992. 233(2): p. 329-334.
    9. Evans, H.E., Miller's Anatomy of the Dog . Three ed. 1993, Philadelphia Saunders. 193-196.
    10. Bourne, M.H., Linscheid, R. L.,Dobyns, J. H., Concomitant scapholunate dissociation and Kienböck's disease. The Journal of Hand Surgery, 1991. 16(3): p. 460-464.
    11. Lavernia, C.J., Cohen, M. S.Taleisnik, J., Treatment of scapholunate dissociation by ligamentous repair and capsulodesis. The Journal of Hand Surgery, 1992. 17(2): p. 354-359.
    12. Coe, M., Spitellie, P.,Trumble, T. E.,Tencer, A. F.,Kiser, P., The scapholunate allograft: A biomechanical feasibility study. The Journal of Hand Surgery, 1995. 20(4): p. 590-596.
    13. Krakauer, J.D., Bishop, A. T.,Cooney, W. P., Surgical treatment of scapholunate advanced collapse. The Journal of Hand Surgery, 1994. 19(5): p. 751-759.
    14. Svoboda, S.J., Eglseder,W. A.,Belkoff,S. M. , Autografts from the foot for reconstruction of the scapholunate interosseous ligament. The Journal of Hand Surgery, 1995. 20(6): p. 980-985
    15. Minami, A., Kaneda, K., Repair and/or reconstruction of scapholunate interosseous ligament in lunate and perilunate dislocations. The Journal of Hand Surgery, 1993. 18(6): p. 1099-1106.
    16. Cuénod, P., Charrière, Eric, Papaloïzos,Michaël Y., A mechanical comparison of bone ligament-bone autografts from the wrist for replacement of the scapholunate ligament. The Journal of Hand Surgery, 2002. 27(6): p. 985-990.
    17. Fung, Y.C., ed. Biomechanics:Mechanical Properties of Living Tissues. Second ed. 1993, Springer-Verlag: New York. 242-320.
    18. Viidik, A., ed. Interdependence between structure and function in collagenous tissues. In: Biology of Collagen. 1980, Academic Press: New Yorrk. 257-281.
    19. Fung, Y.C.B., Elasticity of Soft Tissues in Simple Elongation. American Journal of Physiology, 1967. 213(6): p. 1532-1544.
    20. Butler, D.L., Grood, E.S., Noyes, F.R., Zernicke, R.F., Biomechanics of ligaments and tendons. Exercise and sport sciences reviews, 1978. 6: p. 125-181.
    21. Johnston, J.D., Small, C. F.,Bouxsein, M. L.,Pichora, D. R., Mechanical properties of the scapholunate ligament correlate with bone mineral density measurements of the hand. Journal of Orthopaedic Research, 2004. 22(4): p. 867-871.
    22. Pin , P.G., Nowak, M., Logan, S. E., Leroy,Y.V., Gilula, L. A., Weeks ,P. M., Coincident rupture of the scapholunate and lunotriquetral ligaments without perilunate dislocation: pathomechanics and management. Journal of Hand Surgery, 1990. 15(1): p. 110-119.
    23. M.A. Sutton, J.L.T., H.A. Bruck and T.A. Chae, Full.field Representation of Discretely Sampled Surface Deformation for Displacement and Strain Analysis. Experimental Mechanics, 1991. 31(2): p. 168-177.
    24. Bruck, H.A., McNeill S. R., Sutton M. A. and Peters, W. H. III, Digital image correlation using Newton-Raphson method of partial differential correction Experimental Mechanics, 1989. 29(3): p. 261-267.
    25. http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#examples.
    26. 胡培安, ed. 中央靜脈導管放置數模擬器:影像方法. 2009, 國立成功大學醫學工程研究所碩士論文.
    27. http://www.opticist.org/node.
    28. Weiss, J.A., Gardiner, J. C.,Bonifasi-Lista, C., Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. Journal of Biomechanics, 2002. 35(7): p. 943-950.
    29. Guoa, X., Fana, Y. , Lib,Z.M. , Effects of dividing the transverse carpal ligament on the mechanical behavior of the carpal bones under axial compressive load: A finite element study Medical Engineering & Physics, 2009. 31(2): p. 188-194.
    65
    30. Davis, C.A., Culp,R.W., Hume,E.L., Osterman ,A.L . Reconstruction of the scapholunate ligament in a cadaver model using a bone-ligament-bone autograft from the foot. The Journal of Hand Surgery, 1998. 24(1).
    31. Lista, C.B., Lake,S. P. , Small ,M. S. , Weiss, J. A., Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading. Journal of Orthopaedic Research, 2004. 23(2005): p. 67-76.
    32. Pan, B., Qian K., Xie,H., Asundi,A., Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement Science and Technology, 2009. 20: p. 1-17.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE