| 研究生: |
尤勝加 Yu, Sheng-Chia |
|---|---|
| 論文名稱: |
以金屬輔助化學蝕刻高深寬比矽奈米結構應用於高效率膀胱上皮癌細胞捕捉 Metal-assisted Chemical Etching of High Aspect Ratio Silicon Nanostructures for Highly Efficient Capture of Bladder Epithelial Cancer Cells |
| 指導教授: |
林俊宏
Lin, Chun-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 金屬輔助化學蝕刻 、矽奈米結構 、膀胱癌 、細胞捕捉 |
| 外文關鍵詞: | metal-assisted chemical etching, silicon nanostructures, bladder cancer, cell capture |
| 相關次數: | 點閱:65 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
膀胱癌是我國近年男性十大癌症,為泌尿系統常見的癌症,並且手術後復發率極高,需要持續追蹤病情,目前常見的檢查方法為膀胱鏡,但是這種侵入式的方法容易造成患者不適,並且有尿道感染的風險,透過核磁共振或電腦斷層掃瞄醫療設備,呈現膀胱內部影像,則是相當耗時與高成本,因此發展新的檢查方法為重要課題。
過去癌細胞捕捉的研究成果尚未理想,主要受限於檢體(血液、尿液)中的細胞數量鮮少,導致細胞捕捉的難度相當高,即使嘗試不同檢測的方式,捕捉效率並無顯著提升,並且操作方法十分繁瑣、費時與昂貴。近年來,隨著微奈米結構與細胞行為的相關研究趨於成熟,已經有文獻證實微奈米結構,相較於平面基板或液相,能夠提高癌細胞的捕捉效率。
本論文使用金屬輔助化學蝕刻的方法,製作高深寬比矽奈米結構,具有簡易、快速與低成本的特點,而且基板為生物相容性良好的矽材料,利用結構進行細胞捕捉實驗,探討結構對於癌細胞與正常細胞的捕捉差異性,在4小時的培養時間,第三期膀胱上皮癌細胞(T24)的貼附率超100%,並且與正常膀胱上皮細胞(SV-HUC1)的貼附率比值高達3倍,對於癌細胞與正常細胞的捕捉結果有明顯區別,具有捕捉特定癌細胞的潛力。
In this study, we reported on cost-effective, simple and anisotropic etching approach to fabricate high aspect ratio silicon nanostructures using UV-nanoimprint lithography and metal-assisted chemical etching (MACE). After that, silicon nanostructures were served as cell capture substrates. Bladder epithelial cancer cells (T24) and Bladder epithelial normal cells (SV-HUC1) were separately soaked in PBS environment and incubated with different substrates for 2 and 4 hours. In particular, the cell attachment rate of T24 cells was over 100% on silicon nanostructures at incubation time of 4 hr. However, the cell attachment rate of SV-HUC1 cells was only 40%. It was obviously that cell capture substrates based on silicon nanostructures were demonstrated to exhibit efficient cancer cells capture. In the future, we will further improve the specificity of cancer cells capture and apply to clinical urine or blood examination.
[1]M. L. Paik, M. J. Scolieri, S. L. Brown, J. P. Spirnak, and M. I. Resnick, "Limitations of computerized tomography in staging invasive bladder cancer before radical cystectomy," The Journal of urology, vol. 163, pp. 1693-1696, 2000.
[2]C. L. Morgan, R. Calkins, and E. Cavalcanti, "Computed tomography in the evaluation, staging, and therapy of carcinoma of the bladder and prostate," Radiology, vol. 140, pp. 751-761, 1981.
[3]A. S. Kibel, F. Dehdashti, M. D. Katz, A. P. Klim, R. L. Grubb, P. A. Humphrey, et al., "Prospective study of [18F] fluorodeoxyglucose positron emission tomography/computed tomography for staging of muscle-invasive bladder carcinoma," Journal of Clinical Oncology, vol. 27, pp. 4314-4320, 2009.
[4]A. Tekes, I. Kamel, K. Imam, G. Szarf, M. Schoenberg, K. Nasir, et al., "Dynamic MRI of bladder cancer: evaluation of staging accuracy," American Journal of Roentgenology, vol. 184, pp. 121-127, 2005.
[5]M. Amendola, G. Glazer, H. Grossman, A. Aisen, and I. Francis, "Staging of bladder carcinoma: MRI-CT-surgical correlation," American Journal of Roentgenology, vol. 146, pp. 1179-1183, 1986.
[6]J. Barentsz, G. Jager, J. Witjes, and J. Ruijs, "Primary staging of urinary bladder carcinoma: the role of MRI and a comparison with CT," European radiology, vol. 6, pp. 129-133, 1996.
[7]D. J. Vining, R. J. Zagoria, K. Liu, and D. Stelts, "CT cystoscopy: an innovation in bladder imaging," AJR. American journal of roentgenology, vol. 166, pp. 409-410, 1996.
[8]J. H. Song, I. R. Francis, J. F. Platt, R. H. Cohan, J. Mohsin, S. J. Kielb, et al., "Bladder tumor detection at virtual cystoscopy," Radiology, vol. 218, pp. 95-100, 2001.
[9]D. Di Carlo, N. Aghdam, and L. P. Lee, "Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays," Analytical chemistry, vol. 78, pp. 4925-4930, 2006.
[10]S. J. Tan, R. L. Lakshmi, P. Chen, W.-T. Lim, L. Yobas, and C. T. Lim, "Versatile label free biochip for the detection of circulating tumor cells from peripheral blood in cancer patients," Biosensors and Bioelectronics, vol. 26, pp. 1701-1705, 2010.
[11]S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, et al., "Isolation of rare circulating tumour cells in cancer patients by microchip technology," Nature, vol. 450, pp. 1235-1239, 2007.
[12]W. Chen, S. Weng, F. Zhang, S. Allen, X. Li, L. Bao, et al., "Nanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies," ACS nano, vol. 7, pp. 566-575, 2012.
[13]Y. Wan, M. Winter, B. Delalat, J. E. Hardingham, P. K. Grover, J. Wrin, et al., "Nanostructured polystyrene well plates allow unbiased high-throughput characterization of circulating tumor cells," ACS applied materials & interfaces, vol. 6, pp. 20828-20836, 2014.
[14]D.-H. Kim, K. Han, K. Gupta, K. W. Kwon, K.-Y. Suh, and A. Levchenko, "Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients," Biomaterials, vol. 30, pp. 5433-5444, 2009.
[15]J. Y. Lim and H. J. Donahue, "Cell sensing and response to micro-and nanostructured surfaces produced by chemical and topographic patterning," Tissue engineering, vol. 13, pp. 1879-1891, 2007.
[16]K. Diehl, J. Foley, P. Nealey, and C. Murphy, "Nanoscale topography modulates corneal epithelial cell migration," Journal of Biomedical Materials Research Part A, vol. 75, pp. 603-611, 2005.
[17]游上輝, "利用奈米壓印拉伸聚碳酸酯奈米柱結構應用於高效率膀胱上皮癌細胞捕獲," 成功大學光電科學與工程學系學位論文, pp. 1-75, 2016.
[18]S. P. Low and N. H. Voelcker, "Biocompatibility of porous silicon," in Handbook of Porous Silicon, ed: Springer, 2014, pp. 381-393.
[19]V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, and U. Gösele, "Realization of a silicon nanowire vertical surround‐gate field‐effect transistor," small, vol. 2, pp. 85-88, 2006.
[20]J. Goldberger, A. I. Hochbaum, R. Fan, and P. Yang, "Silicon vertically integrated nanowire field effect transistors," Nano letters, vol. 6, pp. 973-977, 2006.
[21]B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, et al., "Coaxial silicon nanowires as solar cells and nanoelectronic power sources," nature, vol. 449, p. 885, 2007.
[22]G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, "Silicon optical modulators," Nature photonics, vol. 4, p. 518, 2010.
[23]L. Hu and G. Chen, "Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications," Nano letters, vol. 7, pp. 3249-3252, 2007.
[24]C. Lin and M. L. Povinelli, "Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications," Optics Express, vol. 17, pp. 19371-19381, 2009.
[25]F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, "Silicon nanostructures for photonics and photovoltaics," Nature nanotechnology, vol. 9, p. 19, 2014.
[26]K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, "Aligned single‐crystalline Si nanowire arrays for photovoltaic applications," small, vol. 1, pp. 1062-1067, 2005.
[27]V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, et al., "Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters," Nano letters, vol. 9, pp. 1549-1554, 2009.
[28]K. Peng, J. Jie, W. Zhang, and S.-T. Lee, "Silicon nanowires for rechargeable lithium-ion battery anodes," Applied Physics Letters, vol. 93, p. 033105, 2008.
[29]Y. Cui, Q. Wei, H. Park, and C. M. Lieber, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species," Science, vol. 293, pp. 1289-1292, 2001.
[30]F. Patolsky, G. Zheng, and C. M. Lieber, "Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species," Nature protocols, vol. 1, p. 1711, 2006.
[31]F. Marty, L. Rousseau, B. Saadany, B. Mercier, O. Français, Y. Mita, et al., "Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro-and nanostructures," Microelectronics journal, vol. 36, pp. 673-677, 2005.
[32]H. Han, Z. Huang, and W. Lee, "Metal-assisted chemical etching of silicon and nanotechnology applications," Nano Today, vol. 9, pp. 271-304, 2014.
[33]Y. Wu and P. Yang, "Direct observation of vapor− liquid− solid nanowire growth," Journal of the American Chemical Society, vol. 123, pp. 3165-3166, 2001.
[34]B. Fuhrmann, H. S. Leipner, H.-R. Höche, L. Schubert, P. Werner, and U. Gösele, "Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy," Nano letters, vol. 5, pp. 2524-2527, 2005.
[35]D. Dimova-Malinovska, M. Sendova-Vassileva, N. Tzenov, and M. Kamenova, "Preparation of thin porous silicon layers by stain etching," Thin Solid Films, vol. 297, pp. 9-12, 1997.
[36]X. Li and P. Bohn, "Metal-assisted chemical etching in HF/H 2 O 2 produces porous silicon," Applied Physics Letters, vol. 77, pp. 2572-2574, 2000.
[37]Z. Huang, N. Geyer, P. Werner, J. De Boor, and U. Gösele, "Metal‐Assisted Chemical Etching of Silicon: A Review: In memory of Prof. Ulrich Gösele," Advanced materials, vol. 23, pp. 285-308, 2011.
[38]L. Kong, B. Dasgupta, Y. Ren, P. K. Mohseni, M. Hong, X. Li, et al., "Evidences for redox reaction driven charge transfer and mass transport in metal-assisted chemical etching of silicon," Scientific reports, vol. 6, p. 36582, 2016.
[39]N. Geyer, B. Fuhrmann, Z. Huang, J. de Boor, H. S. Leipner, and P. Werner, "Model for the mass transport during metal-assisted chemical etching with contiguous metal films as catalysts," The journal of physical chemistry C, vol. 116, pp. 13446-13451, 2012.
[40]L. Li, Y. Liu, X. Zhao, Z. Lin, and C.-P. Wong, "Uniform vertical trench etching on silicon with high aspect ratio by metal-assisted chemical etching using nanoporous catalysts," ACS applied materials & interfaces, vol. 6, pp. 575-584, 2013.
[41]W. Choi, T. Liew, M. Dawood, H. I. Smith, C. Thompson, and M. Hong, "Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching," Nano letters, vol. 8, pp. 3799-3802, 2008.
[42]Z. Huang, H. Fang, and J. Zhu, "Fabrication of silicon nanowire arrays with controlled diameter, length, and density," Advanced materials, vol. 19, pp. 744-748, 2007.
[43]F. Teng, N. Li, D. Xu, D. Xiao, X. Yang, and N. Lu, "Precise regulation of tilt angle of Si nanostructures via metal-assisted chemical etching," Nanoscale, vol. 9, pp. 449-453, 2017.
[44]T. Shimizu, N. Tanaka, Y. Tada, Y. Hara, N. Nakamura, J. Taniuchi, et al., "Fabrication of nanocone arrays by two step metal assisted chemical etching method," Microelectronic Engineering, vol. 153, pp. 55-59, 2016.
[45]Y. Chen, L. Li, C. Zhang, C.-C. Tuan, X. Chen, J. Gao, et al., "Controlling kink geometry in nanowires fabricated by alternating metal-assisted chemical etching," Nano letters, vol. 17, pp. 1014-1019, 2017.
[46]H. Li, T. Ye, L. Shi, and C. Xie, "Fabrication of ultra-high aspect ratio (> 160: 1) silicon nanostructures by using Au metal assisted chemical etching," Journal of Micromechanics and Microengineering, vol. 27, p. 124002, 2017.
[47]S. Bonde, N. Buch-Månson, K. R. Rostgaard, T. K. Andersen, T. Berthing, and K. L. Martinez, "Exploring arrays of vertical one-dimensional nanostructures for cellular investigations," Nanotechnology, vol. 25, p. 362001, 2014.
[48]J. Lee, B. Kang, B. Hicks, T. F. Chancellor Jr, B. H. Chu, H.-T. Wang, et al., "The control of cell adhesion and viability by zinc oxide nanorods," Biomaterials, vol. 29, pp. 3743-3749, 2008.
[49]C. Prinz, W. Hällström, T. Mårtensson, L. Samuelson, L. Montelius, and M. Kanje, "Axonal guidance on patterned free-standing nanowire surfaces," Nanotechnology, vol. 19, p. 345101, 2008.
[50]D.-J. Kim, J.-K. Seol, G. Lee, G.-S. Kim, and S.-K. Lee, "Cell adhesion and migration on nanopatterned substrates and their effects on cell-capture yield," Nanotechnology, vol. 23, p. 395102, 2012.
[51]S.-W. Kuo, H.-I. Lin, J. H.-C. Ho, Y.-R. V. Shih, H.-F. Chen, T.-J. Yen, et al., "Regulation of the fate of human mesenchymal stem cells by mechanical and stereo-topographical cues provided by silicon nanowires," Biomaterials, vol. 33, pp. 5013-5022, 2012.
[52]K. J. Cha, J. M. Hong, D.-W. Cho, and D. S. Kim, "Enhanced osteogenic fate and function of MC3T3-E1 cells on nanoengineered polystyrene surfaces with nanopillar and nanopore arrays," Biofabrication, vol. 5, p. 025007, 2013.
[53]C. Xie, L. Hanson, W. Xie, Z. Lin, B. Cui, and Y. Cui, "Noninvasive neuron pinning with nanopillar arrays," Nano letters, vol. 10, pp. 4020-4024, 2010.
[54]L. B. Koh, I. Rodriguez, and S. S. Venkatraman, "The effect of topography of polymer surfaces on platelet adhesion," Biomaterials, vol. 31, pp. 1533-1545, 2010.
[55]S. Bonde, T. Berthing, M. H. Madsen, T. K. Andersen, N. Buch-Månson, L. Guo, et al., "Tuning InAs nanowire density for HEK293 cell viability, adhesion, and morphology: Perspectives for nanowire-based biosensors," ACS applied materials & interfaces, vol. 5, pp. 10510-10519, 2013.
[56]H. Persson, C. Købler, K. Mølhave, L. Samuelson, J. O. Tegenfeldt, S. Oredsson, et al., "Fibroblasts cultured on nanowires exhibit low motility, impaired cell division, and DNA damage," Small, vol. 9, pp. 4006-4016, 2013.
[57]X. Xie, A. M. Xu, S. Leal-Ortiz, Y. Cao, C. C. Garner, and N. A. Melosh, "Nanostraw–electroporation system for highly efficient intracellular delivery and transfection," ACS nano, vol. 7, pp. 4351-4358, 2013.
[58]T. Berthing, S. Bonde, K. R. Rostgaard, M. H. Madsen, C. B. Sørensen, J. Nygård, et al., "Cell membrane conformation at vertical nanowire array interface revealed by fluorescence imaging," Nanotechnology, vol. 23, p. 415102, 2012.
[59]F. Mumm, K. M. Beckwith, S. Bonde, K. L. Martinez, and P. Sikorski, "A Transparent Nanowire‐Based Cell Impalement Device Suitable for Detailed Cell–Nanowire Interaction Studies," Small, vol. 9, pp. 263-272, 2013.
[60]V. Plaks, C. D. Koopman, and Z. Werb, "Circulating tumor cells," Science, vol. 341, pp. 1186-1188, 2013.
[61]P. Paterlini-Brechot and N. L. Benali, "Circulating tumor cells (CTC) detection: clinical impact and future directions," Cancer letters, vol. 253, pp. 180-204, 2007.
[62]S. J. Cohen, C. Punt, N. Iannotti, B. H. Saidman, K. D. Sabbath, N. Y. Gabrail, et al., "Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer," Clin. Oncol, vol. 26, pp. 3213-3221, 2008.
[63]C. Alix-Panabières, H. Schwarzenbach, and K. Pantel, "Circulating tumor cells and circulating tumor DNA," Annual review of medicine, vol. 63, pp. 199-215, 2012.
[64]D. R. Parkinson, N. Dracopoli, B. G. Petty, C. Compton, M. Cristofanilli, A. Deisseroth, et al., "Considerations in the development of circulating tumor cell technology for clinical use," Journal of translational medicine, vol. 10, p. 138, 2012.
[65]K. Pantel, C. Alix-Panabières, and S. Riethdorf, "Cancer micrometastases," Nature reviews Clinical oncology, vol. 6, p. 339, 2009.
[66]S. Wang, H. Wang, J. Jiao, K. J. Chen, G. E. Owens, K. i. Kamei, et al., "Three‐Dimensional Nanostructured Substrates toward Efficient Capture of Circulating Tumor Cells," Angewandte Chemie International Edition, vol. 48, pp. 8970-8973, 2009.
[67]X. Dou, P. Li, S. Jiang, H. Bayat, and H. Schönherr, "Bioinspired hierarchically structured surfaces for efficient capture and release of circulating tumor cells," ACS applied materials & interfaces, vol. 9, pp. 8508-8518, 2017.
[68]H. Cui, P. Zhang, W. Wang, G. Li, Y. Hao, L. Wang, et al., "Near-infrared (NIR) controlled reversible cell adhesion on a responsive nano-biointerface," Nano Research, vol. 10, pp. 1345-1355, 2017.
[69]L. An, G. Wang, Y. Han, T. Li, P. Jin, and S. Liu, "Electrochemical biosensor for cancer cell detection based on a surface 3D micro-array," Lab on a Chip, vol. 18, pp. 335-342, 2018.
[70]X. Wu, Z. Li, X.-X. Chen, J. S. Fossey, T. D. James, and Y.-B. Jiang, "Selective sensing of saccharides using simple boronic acids and their aggregates," Chemical Society Reviews, vol. 42, pp. 8032-8048, 2013.
[71]H. Liu, Y. Li, K. Sun, J. Fan, P. Zhang, J. Meng, et al., "Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells," Journal of the American Chemical Society, vol. 135, pp. 7603-7609, 2013.
校內:2023-07-31公開