| 研究生: |
邱泰鈞 Chiu, Tai-Chun |
|---|---|
| 論文名稱: |
應用超短基線追蹤水下載具之動態定位平台開發 Development of Dynamic Positioning Platform Using USBL to Track Underwater Vehicles |
| 指導教授: |
方銘川
Fang, Ming-Chung 王舜民 Wang, Shun-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 動態定位平台 、水下載具 、超短基線 、平面運動機構 |
| 外文關鍵詞: | Dynamic Positioning Platform, Underwater Vehicle, Ultra Short Base Line, Planar Motion Mechanism |
| 相關次數: | 點閱:75 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超短基線(Ultra Short Base Line, USBL)是一種廣泛用於水下載具(如ROV)的追蹤系統。USBL由收發器和應答器所組成,其中收發器安裝在船的底部,應答器安裝於水下載具上。USBL系統主要是提供船舶相對於水下載具的位置與方向資訊。如果船舶沒有精確的動態定位系統,將導致水下載具追蹤上的誤差。另一方面,如果收發器的座標軸和船舶上的定位感測器無法重疊,則會出現校準偏差的問題。因此,本研究的主要目的是設計一個動態定位平台來解決這些問題,本研究的動態定位平台有四個X形配置的推進器,每個推進器設置的夾角為45°,此種配置將使動態定位平台易於在3自由度(3自由度:縱移、橫移、平擺)上控制。在即時控制下,可以確保動態定位平台的定位精度。在模擬分析中,動態定位平台通過平面運動機構(Planar Motion Mechanism, PMM)得到流體動力係數作為系統的模擬參數。再將流體動力係數代入三自由度的運動方程式來進行模擬分析。最後,本研究為了驗證動態定位平台,在成大系統系的拖航水槽中進行測試。USBL追蹤系統用於量測水下載具的相對位置資訊,然後藉由 NI-Compact RIO即時控制系統,來完成水下載具的追蹤,在無風無浪條件下的環境,進行模擬和實驗獲得初步結果,來驗證動態定位平台配合USBL追蹤水下載具的可行性。
Ultra Short Baseline (USBL) is a widely used tracking system for underwater vehicles (as ROV). The USBL consists of a transceiver and a transponder. The transceiver is mounted on the bottom of the ship. The transponder is mounted on an underwater vehicle. The USBL system provides a range and bearing estimate of the underwater vehicle relative to the ship’s position. If the ship does not have an accuracy dynamic positioning system, it will cause the position tracking error of the underwater vehicle. The other, if the coordinate axis of the USBL’s transceiver and the ship positioning sensors are not to overlap, the alignment deviation problem will come up. Therefore, the main purpose of this study is to design a dynamic positioning platform to solve these problems. The dynamic positioning platform of this study has four thrusters in an X-shaped configuration, and each thruster sets up an azimuth of 45°. This configuration will make the dynamic positioning platform easy to be controlled in 3 degrees of freedom (3 DOF: surge, sway, yaw). Under real-time control, the positional accuracy of the dynamic positioning platform can be ensured. In the simulation analysis, the dynamic positioning platform gets the hydrodynamic coefficient as the simulation parameter of the system via the planar motion mechanism (PMM). Simulating the hydrodynamic coefficient into the 3-DOF equation of motion for simulation analysis. Finally, in order to verify the dynamic positioning platform, it was tested in the towing tank of NCKU. The USBL tracking system is used to detect the relative position data of the underwater vehicle, and then the NI-CompactRIO real-time control system is integrated to complete the underwater vehicle tracking. The preliminary results were obtained by simulation and experiment under the condition of no wind and waves. The feasibility of using the USBL to track the underwater vehicle was verified by the dynamic positioning platform.
Batista P. , Silvestre C. , Oliveira P. , “Optimal position and velocity navigation filters for autonomous vehicles,” Automatica, pp.767-774, 2010.
Bowles J., Blount D. L. , “Turning characteristics and capabilities of high-speed monohulls,” Paper Presented at: Proceedings of the Third Chesapeake Powerboat Symposium, 2012.
Campbell S. , Naeem W. , Irwin G.W. , “A review on improving the autonomy of unmanned surface vehicles through intelligent col,lision avoidance manoeuvres,” Annual Reviews in Control, pp. 267-283, 2012.
Do K D, Pan J. , “Robust path-following of underactuated ships: theory and experiments on a model ship,” Ocean Engineering, pp. 1354-1372, 2006.
Fossem Thor l. , “Handbook of Marine Craft Hydrodynamics and Motion Control,” Wiley, 2011.
Jasinski M. E., Sortland B., & Soreide F. , “Applications of remotely controlled equipment in Norwegian marine archaeology,” Paper presented at the OCEANS'95. MTS/IEEE., pp. 566-572, 1995.
Kinsey J.C., Whitcomb L.L. , “Towards In-Situ Calibration of Gyro and Doppler Navigation Sensors for Precision Underwater Vehicle Navigation,” Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Arlington, VA, pp 4016-4023, 2002.
Kinsey J.C., Whitcomb L.L. , “In Situ Alignment Calibration of Attitude and Doppler Sensors for Precision Underwater Vehicle Navigation: Theory and Experiment,” IEEE Journal of Oceanic Engineering, Vol.32, No 2, pp 286-299, 2007.
Kahveci N. E. and Ioannou P. A. , “Adaptive steering control for uncertain ship dynamics and stability analysis,” Automatica, Vol. 49, pp. 685-697, 2013.
Lewandowski E.M. , “Free Running Model Turning Tests of the US Coast Guard Prototype 47 FT Motor Lifeboat,” US Coast Guard, No. CG-D-30–98, 1998.
McEwen R. , Thomas H. , Weber D. , and Psota F. , “Performance of an AUV Navigation System at Arctic Latitudes,” IEEE Journal of Oceanic Engineering, Vol.30, No 2, pp 443-454, 2005.
Manley J. E. , “Unmanned surface vehicles, 15 years of development,” in OCEANS 2008, pp. 1-4, 2008.
Morgado M., Batista P., Oliveira P., Silvestre C. , “Position USBL/DVL sensor-based navigation filter in the presence of unknown ocean currents,” Automatica, pp. 2604-2614, 2011.
Navy U.S. , “The Navy Unmanned Surface Vehicle (USV) Master Plan,” Available online: www.navy.mil/navydata/technology/usvmppr.pdf, 2007.
Opderbecke J. , “At-sea Calibration of a USBL Underwater Vehicle Postioning System,” OCEAN 1997 Conference Proceedings, 6-9 Oct.1997, Halifax, NS, Canada, Vol. 1, pp. 721-726, 1997.
Obana K., Katao H., & Ando M. , “Seafloor positioning system with GPS-acoustic link for crustal dynamics observation—a preliminary result from experiments in the sea—. Earth,” Planets and Space, pp. 415-423, 2000.
Philips D.R.C. , “An Evaluation of USBL and SBL Acoustic Systems and the Optimisation of Methods of Calibration-Part 2,” The Hydrographic Journal, Vol.109, pp. 10-20, 2003.
Philips D.R.C. , “An Evaluation of USBL and SBL Acoustic Systems and the Optimisation of Methods of Calibration-Part 3,” The Hydrographic Journal, Vol.110, pp. 11-19, 2003.
Rezaei S. , Sengupta R. , “Kalman Filter-Based Integration of DGPS and Vehicle Sensors for Localization,” IEEE Transactions on Control Systems Technology, pp. 1080-1088, 2007.
Sugia K. , “On the maneuverability of the high speed boat,” Transportaion Technical Researc Institute, pp. 1-1057, 1963.
Statheros T. , Howells G. , McDonald-Maier K. , “Autonomous ship collision avoidance navigation concepts, technologies and techniques,” The Journal of Navigation, pp. 129-142, 2008.
Sohn S. I. , Oh J H, Lee Y. S. , et al. “Design of a fuel-cell-powered catamaran-type unmanned surface vehicle , ” IEEE Journal of Oceanic Engineering, pp.388-396, 2015.
Tam C. , Bucknall R. , Greig A. , “Review of collision avoidance and path planning methods for ships in close range encounters,” The Journal of Navigation, pp. 455-476, 2009.
Vaneck T. , Manley J. , Rodriguez C. , and Schmidt M. , “Automated Bathymetry using an Autonomous Surface Craft,” NAVIGATION, Journal of the Institute of Navigation, Vol. 43 No 4, Winter, 1996-1997.
Wkeling B.B.P. , Sproston J.L. , Millward A. , “Transverse stability of a fast round bilge hull,” International Conference on Design Consideration for Small Craft, 1984.
Yashisa Hashizume , “Planar Motion Mechanism,”West Japen Fluid Engineering Laboratory Co, 2004.
Zhang T. , Zeng W. , Wan L. , and Ma S. , “Underwater target tracking based on Gaussian particle filter in looking forward sonar images,” Journal of Computational Information Systems, pp. 4801–4810, 2010.
侯章祥,“臍帶電纜及洋流對潛航器運動之影響”,國立成功大學系統及船舶機電工程學系碩士論文,2005。
臧振華 & 劉金源,“台灣水下考古的啟動:近年來澎湖海域水下考古調查「2009 海洋與台灣學術研討會」論文集”,p158-183,2009。
蔡芳諺,“以平面運動機構(PMM)量測船舶不同姿態之操縱性導數與操船性能之研究”,國立成功大學系統及船舶機電工程學系碩士論文,2016。