簡易檢索 / 詳目顯示

研究生: 蕭榮華
Hsiao, Jung-Hua
論文名稱: 真空蒸鍍銅酞花青薄膜及其對二氧化氮氣體感測特性之研究
The study of nitrogen dioxide gas sensing properties of vacuum deposition copper phthalocyanine thin film
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 73
中文關鍵詞: 銅酞花青氣體感測真空蒸鍍
外文關鍵詞: gas sensor, copper phthalocyanine, vacuum deposition
相關次數: 點閱:47下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究以物理氣相沉積法蒸鍍銅酞花青 (CuPc) 薄膜,藉由改變製備溫度及熱處理時間,來探討製備條件對薄膜的表面形態及結構的影響,再利用以吸脫附的模式探討其對二氧化氮氣體感測特性的影響。
      實驗結果顯示,製備溫度為25℃的薄膜,表面形態為顆粒狀且晶粒的堆疊軸垂直於基板面;製備溫度在100℃以上時,薄膜的晶形呈彎曲線狀且堆疊軸平行於基板表面,當製備溫度提高,晶粒的尺寸會變大。XRD分析結果發現,在這些溫度範圍所製備的CuPc膜,其在2 = 6.86° 附近有一強的繞射峰出現,製備溫度愈高,結晶度會愈高,薄膜內部排列會更有規則性。
      銅酞花青薄膜的氣體感測特性方面,製備溫度為100℃的穩定電流變化量為最大,顯示其有較大的靈敏度,利用吸脫附模式所得的吸脫附平衡常數也最大,此乃因為此膜具有較小的晶粒及有利於電子傳導位向的表面型態。製備溫度為100℃以上的薄膜因為晶粒變大,表面積變小導致吸附位置變少,感測靈敏度變小,吸脫附平衡常數也變小。製備溫度在25℃的薄膜,雖然晶粒小,薄膜表面積大,吸附位置多,但晶粒的位向不利於電子傳導,所以平衡常數比100℃所製備的薄膜小。
      銅酞花青薄膜經過熱處理後,不論製備溫度為25℃或200℃,其結晶度皆會變大,但熱處理時間加長,結晶度並沒有變大。經過熱處理後的薄膜表面型態會變的較為平整,所以進行氣體感測的電流變化量 (I) 皆會變小。

      Copper phthalocyanine was vacuum deposition onto gold electrode. The effects of substrate temperature and post-deposition annealing on the film morphology and crystalline structure were studied. The film characteristics were related to their sensing propertied to NO2.
      The results show that the CuPc films which deposition at low substrate temperature (Td = 25℃) have fine-grain morphology and the stacking axis (b axis) of CuPc molecules is normal to the substrate. When Td is elevated to 100-200℃, fiber-like morphology was observed, with orientation mainly parallel to the substrate. XRD results shows that CuPc thin film have a diffraction peak at 2 = 6.86∘and the peak intensity increases with increasing substrate temperature.
      The gas sensing properties shows that the fiber-like structure prepared at Td = 100℃ have the largest current change (sensitivity) value and highest adsorption-desorption equilibrium constant due to its higher highest electrical conductivity and large surface area.
      After annealing time 2 hr of heat annealing at 200℃, the XRD peak intensity increases but a longer gives no effect to increase the peak intensity further. CuPc films have smoother morphology after heat annealing which lead to a smaller sensitivity.

    總目錄 摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅲ 總目錄 Ⅳ 圖目錄 Ⅵ 表目錄 Ⅹ 符號說明 ⅩⅠ 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 理論與文獻回顧 5 2-1薄膜成長的基本機構與模式 5 2-2 銅酞花青的晶體結構及材料特性 10 2-3 基板溫度對酞花青薄膜的影響 13 2-4 熱處理對酞花青薄膜的影響 14 2-5氣體感測 15 2-5-1 氣體感測原理 15 2-5-2 吸附理論 17 第三章 實驗 19 3-1 藥品 19 3-2 感測元件的製備 21 3-2-1玻璃基板的清洗 21 3-2-2 電極的製備 21 3-2-3 酞花青有機金屬薄膜的製備 22 3-2-4 熱處理 26 3-3 薄膜表面結構分析 26 3-3-1 X-Ray繞射分析 (XRD) 26 3-3-2 掃描式電子顯微鏡 (SEM) 29 3-4 二氧化氮氣體之感測 29 第四章 結果與討論 32 4-1 基板溫度對銅酞花青薄膜結構的影響 32 4-2 熱處理對銅酞花青薄膜結構的影響 37 4-3 酞花青薄膜對NO2氣體感測特性分析 45 4-3-1 製備溫度對NO2氣體感測分析 45 4-3-2 熱處理對NO2氣體感測分析 55 第五章 結論 67 參考文獻 69 自述 73

    參考文獻
    Barger W. R., Snow A. W., Wohltjen H. and Jarvis, N. L.,“Derivatives of phthalocyanine prepares for deposition as thin films by the Langmuir-Blodgett
    technique”, Thin Solid Films, Vol. 133, p. 197, 1985
    Ding X. and Xu H., “The characterization and gas sensing properties of a novel amphiphilic phthalocyanine LB film”, Thin Solid Films, Vol. 338, p. 286, 1999
    Emelianov I. L. and Khatko V. V., “The composite phthalocyanine based Langmuir Blodgett films: structural peculiarities and NO sensitive properties”, Thin Solid Films, Vol. 354, p.237, 1999
    Gould R. D. and Ibrahim N. A., “The electrical response of evaporated cobalt phthalocyanine thin films on exposure to NO2”, Thin Solid Films, Vol. 398, p. 432, 2001
    Hsieh J. C., Liu C. J. and Ju Y. H., “Response characteristics of lead phthalocyanine gas sensor: effect of film thickness and crystal morphology”,
    Thin Solid Films, Vol. 322, p. 98, 1998
    Xiang H. Q., Tanaka K. and Kajiyama T., “Gas sensing properties of dilithium octacyanophthalocyanine Langmuir Blodgett films”, Langmuir, Vol. 18, p. 9102, 2002
    Ju Y. H., Hsieh C. and Liu C. J., “The surface reaction and diffusion of NO2 in lead phthalocyanine thin film”, Thin Solid Films, Vol. 342, p. 238, 1999
    Jungyoon E., Kim S., Lim E., Lee K., Cha D. and Friedman, B., “Effects of substrate temperature on copper phthalocyanine thin films”, Applied Surface
    Science, Vol. 205, p.274, 2003
    Ho K. C. and Tsou Y. H., “Chemiresistor-type NO gas sensor based on nickel phthalocyanine thin films”, Sensors and Actuators B, Vol. 77, p. 253, 2001
    Leznoff C. C. and Lever A. B. P., “Phthalocyanines properties and applications”, VCH , New York, p. 364, 1989
    Liu C. J., Hsieh J. C. and Ju Y. H., “Response characteristics of lead phthalocyanine gas sensor: Effect of operating temperature and postdeposition
    annealing”, J. Vac. Sci. Technol. A, Vol. 14, No. 3, 1996
    Liu C. J., Peng C. H., Ju Y. H. and Hsieh J. C., “Titanyl phthalocyanine gas sensor for NO2 detection”, Sensors and Actuators B, Vol. 52, p. 264,1998
    Masui M., Sasahara M., Wada T. and Takeuchi M., “Gas sensitive properties of copper phthalocyanine thin films”, Applied Surface Science , Vol. 92, p.
    643, 1996
    Meixner H. and U. Lampe, “Metal oxide sensor”, Sensors and Actuacors B, Vol. 33, p. 198, 1996
    Newton I. M., Starke T. K. H., Willis M. R. and McHale G., “NO2 detection at room temperature with copper phthalocyanine thin film devices”, Sensors and Actuators, Vol. 67, p. 307, 2000
    Passard M., Maleysson C., Pauly A., Dogo s., Germain J. P. and Blanc J. P., “Gas sensitivity of phthalocyanine thin films”, Sensors and Actuators B, Vol. 18-19, p. 489, 1994
    Rella R., Serra A., Siciliano P., Tepore A., Valli L. and Zocco A., “Langmuir Blodgett multilayers based on copper phthalocyanine as gas sensor materials: active layer gas interaction model and conductivity modulation ”, Langmuir, Vol. 13, p. 6562, 1997
    Sadaoka Y., Jones T. A. and Gopel W., “Effect of heat pretreatment on the electrical conductance of lead phthalocyanine films for NO2 gas detection”,
    Journal of Materials Science Letters, Vol. 8, p. 1095, 1989
    Seberveglieri G., “Recent development in semiconducting thin film gas sensors”, Sensors and Actuators B, Vol. 23, p. 103, 1995
    Wang H. Y., Wen H. KO, Batzel D. A., Kenney M. E. and Lando J. B.,“Phthalocyanine Langmuir-Blodgett film microsensors for halogen gases”, Sensors and Actuators B, Vol. 1, p. 138, 1990
    Xiao K., Liu Y., Yu G. and Zhu D., “Influence of the substrate temperature during deposition on film characteristics of copper Phthalocyanine and field-effect transistor properties”, Applied Physics A, Vol. 77, p. 367, 2003
    Lee Y. L., Tsai W. C. and Maa J. R., “Effect of substrate temperature on the film characteristics and gas-sensing properties of copper phthalocyanine
    films”, Applied Surface Science, Vol. 173, p. 352, 2001
    Lee Y. L., Tsia W. C., Chang C. H. and Yang Y. M., “Effect of heat annealing on the film characteristics anf gas sensing properties of substituted and un-substituted copper phthalocyanine films”, Applied Surface Science, Vol. 172, p. 191, 2001
    Lee Y. L., Hsiao C. Y., Chang C. H. and Yang Y. M., “Effects of sensing temperature on the gas sensing properties of copper phthalocyanine and copper tetra-tert-butyl Phthalocyanine films”, Sensors and Actuators B , Vol. 94, p.169, 2003
    李玉郎, “真空蒸鍍程序中薄膜的成核與成長”, 國立成功大學化學工程研究所博士論文, 1991
    鄭煜騰、鄭耀宗, “氣體感測器的市場分析與發展概況”, 科儀新知第十八卷五期, p. 76 , 1997
    蔡文慶, “有機金屬薄膜的結構與氣體感測特之研究”, 國立成功大學化學工程學系碩士論文, 1999
    謝錦淇, “真空蒸鍍有機半導體薄膜及其氣體感測特性之研究”, 國立台灣科技大學化學工程學系博士論文, 1998
    蕭傳議, “真空蒸鍍有機金屬薄膜及其氣體感測特性之研究”, 國立成功大學化學工程學系碩士論文, 2000

    下載圖示 校內:立即公開
    校外:2004-07-09公開
    QR CODE