簡易檢索 / 詳目顯示

研究生: 盧冠憲
Lu, Guan-Shian
論文名稱: 氣冷式機車引擎入口流道設計
The Inlet Channel Design for an Air-Cooled Scooter Engine
指導教授: 張錦裕
Jang, Jiin-Yuh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 122
中文關鍵詞: 氣冷引擎計算流體力學共軛熱傳流場可視化
外文關鍵詞: air-cooled engine, computational fluid dynamics, conjugated heat transfer, flow visualization
相關次數: 點閱:120下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機車在台灣以及東南亞為最普遍使用之交通工具,而小c.c數的機車冷卻系統以氣冷式為主。機車引擎的散熱系統是直接影響引擎性能的因素,過高的溫度會使零件損壞,過低的溫度會使熱效率降低與油耗增加,故冷卻系統的設計成為很重要的關鍵。
    本文建立光陽AFA9,163cc單缸氣冷引擎之冷卻通道外流場及引擎共軛熱傳分析模型。由於在高速運轉容易產生火星塞周圍的溫度過高,及汽缸頭與汽缸溫度分佈不均勻的問題,因此對高速運轉9000rpm進行模擬。為了改善火星塞周圍熱點溫度過高的問題,對導風罩上可能影響火星塞附近溫度的兩個特徵,分別為導風板及側凹板進行改良。首先對導風板高度進行改良,Case1為原始設計之導風板H=0mm,Case2到Case5分別為將導風板向缸頭上方提高H=5、10、15mm及移除導風板,對不同導風板高度搭配原始模型之側凹板寬度W=4.5cm進行外流場分析與共軛熱傳分析。再對側凹板寬度進行改良,Case1為原始設計之側凹板寬度W=4.5cm,Case2到Case4分別為將側凹板寬度W改成4cm、3cm和移除側凹板,對不同側凹板寬度搭配原始模型之導風板H=0mm進行外流場分析與共軛熱傳分析。從數值模擬結果與光陽公司提供之實驗數據互相對照,發現最大誤差約為9 %。此外,以3D列印之方式印製一可替換不同導風板高度與不同側凹板寬度的透明導風罩,藉以觀察流體流動狀況,再將所觀察之結果以影片方式呈現並與數值模擬之流場進行交互比對。
    模擬結果顯示,在不同導風板高度的Case中,從降低火星塞周圍溫度為首要目的來說,Case1(原始模型H=0mm)與Case2(向缸頭上方提高H=5mm)對火星塞周圍溫度差異不大,但比其他Case來的低,而在Case5(無導風板)時溫度最高,散熱最差。再從溫度均勻性為次要目的來說,Case2整體溫差比Case1的溫差來的小,因此以Case2(向缸頭上方提高H=5mm)的設計最佳。
    在不同側凹板寬度的Case中,從降低火星塞周圍溫度為首要目的來說,Case3(側凹板寬度W=3cm)在火星塞周圍平均溫度比其他Case來的低。再從溫度均勻性為次要目的來說,Case3的整體溫差也比其他Case來的好,因此以Case3(側凹板寬度W=3cm)的設計最佳。

    In this study, a 3-D numerical air-cooling channel model of a 163c.c four stroke single cylinder scooter engine is established and evaluated through computational fluid dynamics(CFD) with a conjugated heat transfer scheme to show the temperature distribution of the engine. The flow field is also observed, and the correlation between the heat transfer performance and flow field is discussed. In order to observe the real flow field inside the engine shroud, we also establish a transparent engine shroud model through 3-D printer.
    In view of the temperature around the spark plug hole is too high; thus, we try to improve the two features on the shroud, which are deflector and concave. We first improve the height of the deflector on the shroud. There are 5 cases in discussion. Then, we try to change the anther feature, width of the concave. There are 4 cases in discussion. The result shows the temperature around the spark plug hole and temperature differences on different fins. We find the optimal design of the air-cooling channel, which has the lowest temperature around the spark plug hole and better temperature difference on the fins.

    摘要 I Abstract III 致謝 XIII 目錄 XIV 表目錄 XVI 圖目錄 XVII 符號說明 XXI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究目的及方法 4 第二章 理論分析 8 2.1 物理模型 8 2.2 統御方程式 8 2.3 紊流模型( 雙方程式模型) 10 2.4 牆函數(wall function) 12 2.5 邊界條件 12 2.6 模擬之參數 14 第三章 實驗設備及方法 28 3.1 實驗介紹及設備 28 3.2 實驗步驟 28 第四章 數值分析 38 4.1 數值方法 38 4.2 格點測試 39 4.3 解題流程 40 4.4 收斂條件 40 第五章 結果與討論 47 5.1 模擬結果之驗證 47 5.2 不同導風板高度 48 5.2.1 流場解析 48 5.2.2 熱傳係數分佈比較 49 5.2.3 比較引擎內溫度場之分佈 50 5.3 不同側凹板寬度 52 5.3.1 流場解析 52 5.3.2 熱傳係數分佈比較 53 5.3.3 比較引擎內溫度場之分佈 53 第六章 結論 118 參考文獻 120

    [1]Annand, W.J.D., “Heat Transfer in the Cylinders of Reciprocating Internal Combustion Engines,” Proceedings of the Institution of Mechanical Engineers, Vol. 177, p. 973-996, 1963.

    [2]Woschni, G., “A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine,” SAE Technical paper, 1967.

    [3]Enomoto, Y., Furuhama, S., and Minakami, K., “Heat Loss to Combustion Chamber Wall of 4-Stroke Gasoline Engine: 1st Report, Heat Loss to Piston and Cylinder,” Bulletin of JSME, Vol. 28, p. 647-655, 1985.

    [4]Wu, H.W. and Chiu, C.P., “A Study of Finned-Wall Cylinder Temperature in a Two-Stroke Gasoline Engine-Comparison of Analytical and Experimental Results,” SAE Technical Paper, 1987.

    [5]Li, C.-H., “Thermal and Mechanical Behavior of an L-4 Engine,” in SAE Transactions, SAE International, Vol. 97, p. 1318-1331, 1988.

    [6]Hayes, T., White, R., and Peters, J., “Combustion Chamber Temperature and Instantaneous Local Heat Flux Measurements in a Spark Ignition Engine,” SAE Technical Paper, 1993.

    [7]Thornhill, D. and May, A., “An Experimental Investigation into the Cooling of Finned Metal Cylinders, in a Free Air Stream,” SAE Technical Paper, 1999.

    [8]Thornhill, D., Graham, A., Cunnigham, G., Troxler, P., and Meyer, R., “Experimental Investigation into the Free Air-Cooling of Air-Cooled Cylinders,” SAE Technical Paper, 2003.

    [9]Xin, J., Shih, S., Itano, E., and Maeda, Y., “Integration of 3D Combustion Simulations and Conjugate Heat Transfer Analysis to Quantitatively Evaluate Component Temperatures,” SAE Technical Paper, 2003.

    [10]李進修、王漢英, “汽機車引擎設計與分析技術, ” 全華科技圖書股份有限公司, 2005.

    [11]Yoshida, M., Ishihara, S., Murakami, Y., Nakashima, K., and Yamamoto, M., “Air-Cooling Effects of Fins on a Motorcycle Engine,” Vol. 49, p. 869-875, 2006.

    [12]Yoshida, M., Ishihara, S., Murakami, Y., Nakashima, K., and Yamamoto, M., “Optimum Fin Layout of Air-Cooled Engine Cylinder in Air Stream,” SAE Technical Paper, 2006.

    [13]Ishihara, S., Murakami, Y., Nakashima, K., Yamamoto, M., and Yoshida, M., “Improvement of Cylinder Cooling in Air-Cooled Engines by Utilizing Baffle Plates,” SAE Technical Paper, 2007.

    [14]林振瑋, “輥輪流平與氣冷式機車引擎熱液動之性能分析,” 成功大學機械工程學系學位論文, p. 1-82, 2008.

    [15]Nakashima, K., Fujiyoshi, M., Ishihara, S., Murakami, Y., Yamamoto, M., and Yoshida, M., “Cooling Effects of Air-Cooled Finned Cylinder Utilizing Contracted Flow,” SAE Technical Paper, 2009.

    [16]吳嘉晏, “氣冷及水冷式機車引擎之三維熱液動性能分析, ” 成功大學機械工程學系學位論文, p. 1-91, 2009.

    [17]Systèmes, D., “Abaqus Analysis User’s Manual,” Simulia Corp. Providence, RI, USA, 2007.

    [18]Agarwal, P., Shrikhande, M., and Srinivasan, P., “Heat Transfer Simulation by CFD from Fins of an Air Cooled Motorcycle Engine under Varying Climatic Conditions,” Proceedings of the World Congress on Engineering, London, U.K., Vol. III, 2011.

    [19]Chandrakant, S.S., “Numerical and Experimental Analysis of Heat Transfer through Various Types of Fin Profiles by Forced Convection,” International Journal of Engineering Research & Technology (IJERT), Vol. 2, p. 2278-0181, 2013.

    [20]Kumar, A.R., Raju, G.J., and Rao, G.A., “Heat Transfer Analysis in the Cylinder Head of a Four-Stroke Si Engine,” International Journal of Engineering Research & Technology, Vol. 2, p. 645-651, 2013.

    [21]Brusiani, F., Falfari, S., Forte, C., Cazzoli, G., Verziagi, P., Ferrari, M., and Catanese, D., “Definition of a CFD Methodology to Evaluate the Cylinder Temperature Distribution in Two-Stroke Air Cooled Engines,” Energy Procedia, Vol. 81, p. 765-774, 2015.

    [22]“StarCCM+ v8 User Manual, USA,” CD-Adapco Inc., USA, 2013.

    [23]Tang, G.Z., Du, B.C., and Deng, T., “Improvement of the Air-Cooled System on an Engine Cylinder Head and Its Analysis,” in Advances in Mechanical Engineering, Vol. 9, p. 1687814017704358, 2017.

    [24]陳柏岡, “水冷式與氣冷式機車引擎冷卻系統熱傳分析, ” 成功大學機械工程學系學位論文, p. 1-175, 2017.

    [25]“ANSYS FLUENT User's Guide. Release 17.2,” ANSYS Inc., USA, 2016.

    [26]Launder, B.E. and Spalding, D.B., “Mathematical Models of Turbulence,” Academic press, 1972.

    [27]張錦裕、陳寒濤、吳明勳, “引擎缸內熱源分布及燃燒研究分析,”光陽公司研究報告, 2009.

    [28]吳明勳, “燃燒室設計與燃燒分析方法研究,” 光陽公司研究報告, 2015.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE