簡易檢索 / 詳目顯示

研究生: 呂學榮
Lu, Hsueh-Jung
論文名稱: 摻雜矽與鈰之釔鋁石榴石螢光陶瓷板的光致發光與熱導性質研究
Photoluminescence and Thermal Conductivity Properties of Si and Ce Doped YAG Phosphor Ceramics
指導教授: 陳引幹
Chen, In-Gann
共同指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 109
中文關鍵詞: 螢光陶瓷板LED封裝
外文關鍵詞: YAG:Ce, Phosphor Ceramic
相關次數: 點閱:105下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主旨在於開發YAG:Ce螢光陶瓷板,期望未來能採用此一陶瓷材料,直接貼合LED晶片或是固定於晶片上方的新型封裝技術,來減少樹脂的使用量,取代目前白光LED利用樹脂封裝的方式,進一步增加LED之散熱效率,延長其使用壽命。

    而本研究首先以膠體共沉法Y2.94Al5O12:Ce0.06與固態反應法Y2.95Al5O12:Ce0.05作為各起始粉末之劑量比,並於製程中摻雜不同重量比之SiO2後,對粉體進行壓胚與燒結。研究結果顯示,摻雜適當比例SiO2之YAG:Ce生胚,經熱處理後,YAG相可與SiO2產生共晶反應,因此製程上於較低溫度時,即可發生液相燒結的情形,增加樣品內部之緻密性,有助Ce3+稀土離子的擴散,提升YAG:Ce螢光陶瓷板之發光效率。

    另一方面,本研究也試著改善各製程,如將共沉法製作之樣品進行重覆燒結,以及於固態法製程中探討SiO2在製程中添加的時機點等,對於YAG:Ce螢光陶瓷板之發光性質,都有一定的提升效果。

    在熱傳導研究結果方面,發現確實在添加適當比例之SiO2以後,由於YAG:Ce螢光陶瓷板內部孔洞減少與結晶性增加的關係,熱傳導係數有增加的趨勢。此外對於熱消淬性質而言,由於添加SiO2以後,YAG:Ce螢光陶瓷板之熱消淬活化能變大的關係,因此在熱穩定性上也有所提升。

    而在比較不同壓胚方式上,冷均壓雖然可以使YAG:Ce螢光陶瓷板更緻密,但推測由於螢光陶瓷板內部結晶性降低,所以導致在發光效率上,反而不如單軸加壓之結果。

    而本研究最後也將YAG:Ce螢光陶瓷板與藍光晶片做初步的簡易接合光學測試,發現摻雜5wt% SiO2之YAG:Ce螢光陶瓷板,其整體LED流明效率約為未摻雜SiO2之樣品的六倍之多,因此摻雜SiO2之YAG:Ce螢光陶瓷板在未來應用上是相當具有潛力的。

    This study is to fabricate the YAG:Ce phosphor ceramic used for the new LED packaging technology. In order to reduce the usage of resin in LED, the phosphor ceramic of YAG:Ce was utilized to be attached to the chips directly or be fixed around the chips. This method can substitute for the current white LED packaging technique with resin encapsulation and prolong the lifetime of LED by improving the ability of heat dissipation.
    At first, the YAG:Ce phosphors with stoichiometric Y2.94Al5O12:Ce0.06 and Y2.95Al5O12:Ce0.05 are prepared by co-precipitation method and solid state reaction, respectively. Then, the YAG:Ce phosphors with the addition of different amounts of SiO2 are pressed and sintered. The eutectic reaction of YAG and SiO2 is found by doping appropriate proportion SiO2 after heat treatment. The liquid phase which resulted in densification of the phosphor ceramic is observed even by sintering at lower temperature. It is also benefit for the diffusion of Ce3+ ion in the YAG phosphors and enhancement of the luminous intensity of YAG:Ce phosphor ceramics.
    On the other hand, the study uses different method to fabricate the phosphor ceramic, such as multiple sintering for the samples by co-precipitation method and the different ways of doping SiO2 in the samples by solid state reaction. The optical property of YAG:Ce phosphor ceramics both can get improvement .
    In the thermal conductivity results, after doping the appropriate proportion of SiO2, owing to reduce the number of internal holes in the YAG:Ce phosphor ceramic and have the better crystallinity, the thermal conductivity can get increase. In addition, for the thermal quenching property, because the activation energy for thermal quenching of YAG:Ce phosphor ceramic increase by SiO2 addition, the thermal stability is also improved. In comparison with different pressing process, though it can lead to the YAG:Ce phosphor ceramic more compact by the cold isostatic pressing, it would reduce the crystallinity of YAG:Ce phosphor ceramic. Resulting in luminous efficiency, it is not as good as the uniaxial pressing. Finally, the YAG:Ce phosphor ceramics are mounted on the blue LED chips to investigate some optical properties. Finding that the luminous efficacy of YAG:Ce phosphor ceramics with doping 5wt% SiO2 are six times as much as without doping SiO2. Therefore, YAG:Ce phosphor ceramic with doping SiO2 is absolutely potential for future applications.

    摘要 I Abstract III 致謝 V 目錄 VII 表目錄 X 圖目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章 理論基礎與文獻回顧 3 2-1發光機制簡介 3 2-2螢光材料之分類應用與發光原理過程 4 2-2-1螢光材料之分類 4 2-2-2螢光材料之應用 4 2-2-3螢光體能量的激發與吸收 4 2-2-4 史托克位移 5 2-3影響發光行為之因素 5 2-3-1濃度淬滅效應 5 2-3-2 熱消淬效應 6 2-3-3 毒化效應 6 2-4螢光體放光的特性量測 6 2-4-1放射光譜的量測 6 2-4-2量子效率的量測 7 2-4-3色度座標 7 2-5 YAG型螢光材料的簡介 8 2-5-1 歷史沿革 8 2-5-2釔鋁柘榴石晶體結構介紹 9 2-5-3 YAG: Ce3+的發光光譜 9 2-6固態反應法與化學共沉法之比較 10 2-6-1 固態反應法 10 2-6-2 化學共沉法 10 2-7導熱係數之簡介 11 2-8 白光發光二極體封裝簡介 13 2-8-1白光發光二極體簡介 13 2-8-2 螢光粉封裝塗佈方式 13 2-8-3 LED螢光陶瓷板封裝技術 14 2-9文獻回顧 15 第三章 實驗方法及步驟 29 3-1實驗藥品 29 3-2儀器設備 30 3-3實驗流程 32 3-3-1 摻雜SiO2於YAG:Ce螢光陶瓷板 32 3-3-2 採用不同壓胚製程來製作螢光陶瓷板 35 3-3-3 螢光陶瓷板與LED藍光晶片之接合 36 第四章 結果與討論 44 4-1摻雜SiO2對YAG:Ce螢光陶瓷板發光強度與導熱性質分析 44 4-1-1 Ce含量對於螢光陶瓷板之光學探討 44 4-1-2 SiO2對於共沉法螢光陶瓷板之光學與微結構探討 45 4-1-3 SiO2對於固態法螢光陶瓷板之光學與微結構探討 50 4-1-4 SiO2對於共沉法螢光陶瓷板之熱傳導率分析 53 4-1-5 SiO2對於共沉法螢光陶瓷板之熱消淬性質探討 55 4-2壓胚製程對於共沉法YAG:Ce螢光陶瓷板微結構與發光強度分析 57 4-2-1單軸加壓與冷均壓對於螢光陶瓷板微結構分析 57 4-2-2單軸加壓與冷均壓對於螢光陶瓷板發光強度分析 59 4-3 YAG螢光陶瓷板與LED晶片接合測試 60 第五章 結論 104 5-1 研究結論 104 參考文獻 106

    [1] 陳昱霖,“柘榴石(Y3Al5O12)螢光體之合成與性質研究”,國立成功大學材料科學及工程學系碩士論文,民國90年
    [2] 陳琨明,“釔鋁石榴石螢光體(Y3Al5O12:Ce)之合成與發光特性研究”,國立成功大學材料科學及工程學系碩士論文,民國96年
    [3] 劉如熹、王健源,“白光發光二極體製作技術”,2001
    [4] 楊俊英,“電子產業用螢光材料之應用調查”,工研院,民國81年
    [5] 王書任、林仁鈞,“讓LED發光的功臣—螢光粉”,科學發展435 期,2009年3月
    [6] http://www.olympusfluoview.com/theory/fluoroexciteemit.html
    [7] G. Blasse and B.C. Grabmaier, “Luminescent materials”, Springer Verlag, Berlin Heidelberg Germany, p.13, 1994
    [8] 陳立德,“鹼土鋁酸鹽MxSr1-xAl2O4:Eu2+(M:Ca,Ba)螢光粉體之發光、色度特性及應用研究”,國立成功大學材料科學與工程學系博士論文,民國95年
    [9] http://zh.wikipedia.org/zh-tw/File:CIE_1931_XYZ_Color_Matching_Functions. svg
    [10] 戚務聖,“發光二極體檢測”,光訊89期,p.11,2001年4月
    [11] R.C. Ropp, “Luminescence and the solid state”, Elsevier Science Publishers, B. V., The Netherlands, 1991
    [12] S. Geller and M.A. Gilleo, “Structure and ferrimagnetism of yttrium and rare earth iron garnets”, Acta Crystallographica10, p.239, 1957
    [13] J.E. Geusic and L.G. Van Uitert, “Laser oscillations in Nd doped yttrium aluminum, yttrium gallium and gadolinium garnets”, Applied Physics Letters 4, p.182, 1964
    [14] E.M. Levin, C.R. Robbins and H.F. McMurdie, “Phase diagrams for ceramists”, Margie K. Reser, 1964
    [15] S. Geller, “Crystal chemistry of the garnets”, Z. Kristallogr 125, p.1-47, 1967
    [16] T. Tomiki, H. Akamine, M. Gushiken, Y. Kinjoh, M. Miyazato, T. Miyazato, N. Toyokawa, M. Hiraoka, N. Hirata, Y.Ganaha and T. Futemma, “Ce3+ centers in Y3Al5O12 (YAG) single crystals”, Journal of The Physical Society of Japan 60, p.2437, 1991
    [17] Y.F. Zhang, L. Li, X.S. Zhang and Q. Xi, “Temperature effects on photoluminescence of YAG:Ce3+ phosphor and performance in white light-emitting diodes”, Journal of Rare Earths 26, p.446, 2008
    [18] V.B. Glushkova, V.A. Krzhizhanovskaya and O.N. Egorova, “Physicochemical investigations of the compounds in the system Y2O3-Al2O3”, Doklady Akademii Nauk SSSR 260, p.1157–1160, 1981
    [19] Y.X. Pan, M.M. Wu and Q. Su, “Comparative investigation on synthesis and photoluminescence of YAG: Ce phosphor”, Materials Science and Engineering B 106, 3, p.251-256, 2004
    [20] X. Li, H. Liu, J. Wang, H.M. Cui and F. Han, “YAG: Ce nano sized phosphor particles prepared by a solvothermal method”, Materials Research Bulletin 39, p.1923–1930, 2004
    [21] 陳登銘,“白光 LED 螢光粉技術三強鼎立”,新電子雜誌269期,p.73,2008
    [22] S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma and Q.Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties”, Materials Science and Engineering: R: Reports 71, 1, p.1–34, 2010
    [23] 鄭景太,“高功率LED封裝技術的發展現況-下篇”,工業材料雜誌 266 期,p.117-128,2009
    [24] S.C. Allen and A.J. Steckl, “A nearly ideal phosphor-converted white light-emitting diode”, Applied Physics Letters 92, 14, p.144309, 2008
    [25] 陳凱琪,李巡天,許家紋,林志浩,“LED元件用高效能透明封裝材料技術趨勢(下)”,工業材料雜誌 247 期,p.167-172,2007
    [26] 黃振東,“LED封裝及散熱基板材料之現況與發展”,工業材料雜誌 231 期,p.70-81,2006
    [27] H. Bechtel, P. Schmidt, W. Busselt and B.S. Schreinemacher, “Lumiramic: a new phosphor technology for high performance solid state light sources”, Proceedings SPIE 7058, 70580E, 2008
    [28] S. Fujita, A. Sakamoto and S. Tanabe, “Luminescence characteristic of YAG glass-ceramic phosphor for white LED”, IEEE journal of selected topics in quantum electronics 14, 5, p.1387-1391, 2008
    [29] S. Fujita and S. Tanabe, “Thermal quenching of Ce3+:Y3Al5O12 glass-ceramic phosphor”, Japanese journal of Applied Physics 48, 12, p.120210-120210-3, 2009
    [30] US Patent Pub. No: US 2009/0186433
    [31] O. Fabrichnaya, H.J. Seifert, R. Weiland, T. Ludwig, F. Aldinger and A. Navrotsky, “Phase equilibria and thermodynamics in the Y2O3-Al2O3-SiO2 system” , Z. Metallkd. 92, 9, p.1083-1097, 2001
    [32] 溫佑良,“不同粒徑釔鋁石榴石摻鈰螢光體之合成與性質研究”,國立成功大學材料學及工程學系碩士論文,民國92年
    [33] 盧宗衡,“摻雜矽與鈰之YAG螢光粉的擴散與發光性質研究”,國立成功大學材料學及工程學系碩士論文,民國98年
    [34] C.Q. Li, H.B. Zuo, M.F. Zhang, J.C. Han and S.H. Meng, “Fabrication of transparent YAG ceramics by traditional solid-state-reaction method”, Transactions of Nonferrous Metals Society of China 17, p.148-153, 2007
    [35] 蒋繼峰、周少華、張朋越、洪樟連,“共沉澱-热處理工藝合成YAG: Ce3+螢光粉的研究”,稀有金屬材料與工程第37卷增刊2,2008
    [36] 呂光哲、孫旭東、修稚萌、倪愛偉,“硫酸鹽共沉淀法制備YAG粉體及透明陶瓷”,材料導報 8月22卷 8期,2008
    [37] S. Nishiura, S. Tanabe, K. Fujioka and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED”, Optical Materials 33, 5, p.688-691, March 2010
    [38] J. Zhou, W.X. Zhang, L. Wang, Y.Q. Shen, J. Li , W.B. Liu, B.X. Jiang, H.M. Kou, Y. Shi and Y.B. Pan, “Fabrication, microstructure and optical properties of polycrystalline Er3+:Y3Al5O12 ceramics”, Ceramics International 37, p.119–125, 2011
    [39] X.D. Xu, Z.W. Zhao, J. Xu and P.Z. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1-x)Al5O12 (x = 0:05, 0.1 and 0.25) single crystals”, Solid State Communications 130, p.529–532, 2004
    [40] H. Yagi, T. Yanagitani, T. Numazawa and K. Ueda,“The physical properties of transparent Y3Al5O12: Elastic modulus at high temperature and thermal conductivity at low temperature”, Ceramics International 33, 5, p.711-714, 2007
    [41] B.S. Wang, H.H. Jiang, X.D. Jia, Q.L. Zhang, D.L. Sun and S.T. Yin, “Thermal conductivity of doped YAG and GGG laser crystal”, Frontiers of Optoelectronics in China 1, p.138-141, 2008
    [42] 李慧娟、邵起越、董岩、蔣建清、梁超、何錦華,“白光LED用YAG:Ce3+螢光粉的溫度淬滅性質”,發光學報第29卷第6期,2008年12月
    [43] Hitachi High Technologies, Inc. “Quantum Yield Measurement of Sodium Salicylate” , 2010
    [44] http://www.isu.edu.tw/upload/81204/9/files/dept_9_lv_3_7270.pdf
    [45] http://www.ch.ntu.edu.tw/~rsliu/pdf96/material/4_report.pdf
    [46]余昭蓉,“摻加稀土元素鋁酸釔螢光體之合成與特性鑑定”,國立交通大學應用化學研究所碩士論文,1997 年
    [47] M. Veith, S. Mathur, A. Kareiva, M. Jilavi, M. Zimmer and V. Huch, “Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12 via different sol-gel methods”, Journal of Materials Chemistry 9, p.3069-3079, 1999
    [48] http://www.osicotech.com/products/YAG.php
    [49] C.H. Hsu and C.H. Lu, “Microwave-hydrothermally synthesized (Sr1-x-yCexTby)Si2O2-δN2+μ phosphors: efficient energy transfer, structural refinement and photoluminescence properties”, Journal of Materials Chemistry 21, p.2932–2939, 2011
    [50] J.S. Kim, Y.H. Park, S.M. Kim, J.C. Choi and H.L. Park, “Temperature-dependent emission spectra of M2SiO4:Eu2+ (M=Ca, Sr, Ba) phosphors for green and greenish white LEDs”, Solid State Communications 133, 7, p. 445-448, 2005
    [51] Y. H. Chen, B. Liu, C.S. Shi, G.H. Rn and G. Zimmerer, “The temperature effect of Lu2SiO5:Ce3+ luminescence”, Nuclear Instruments and Methods in Physics Research A 537,1, p.31–35, 2005
    [52] S.Y. Xu, X.S. Zhang, Y.L. Zhou, Q. Xi and L. Li, “Influence of Si4+ substitution on the temperature-dependent characteristics of Y3Al5O12:Ce3+ ” ,Chinese Physics B 20, 3, p.037804-1-037804-5, 2011
    [53] A. Maıtre, C. Salle´, R. Boulesteix and J.F. Baumard, “Effect of silica on the reactive sintering of polycrystalline Nd: YAG ceramics”, Journal of the American Ceramic Society 91, p.406–413, 2008

    下載圖示 校內:2014-01-06公開
    校外:2017-01-06公開
    QR CODE