| 研究生: |
邱妘 Chiu, Yun |
|---|---|
| 論文名稱: |
合成半氟化及亞磷酸官能基之共聚物於修飾鈦金屬表面,並特性分析及評估其血液相容性 Semi-Fluorinated and Phosphonic Acid-Containing Copolymers for Surface Modification of Titanium: Synthesis, Characterization, and Hemocompatibility Evaluation |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 乙基磷酸 、2,2,2-三氟甲基丙烯酸酯 、鈦金屬 、自由基共聚合 、血液相容性 |
| 外文關鍵詞: | vinyphosphonic acid, 2, 2, 2-trifluoroethyl methacrylate, titanium, free radical copolymerization, hemocompatibility |
| 相關次數: | 點閱:98 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雖然鈦及其合金的醫療器材在生醫領域已被廣泛使用,但在人體使用中仍然有血液相容性不佳的問題存在。為了克服這項問題,研究中我們嘗試新的表面改質方法去改善鈦表面的血液相容性。
此研究中,將親水和疏水性單體透過傳統自由基聚合成功製備出一系列無規共聚物,其中親水性單體選擇乙基磷酸(vinyphosphonic acid,VPA),不只是因為它本身極為親水,還因為結構中含有亞磷酸官能基,再加熱之後可提供穩固的共價鍵結於鈦基材表面。而疏水性單體選擇2,2,2-三氟甲基丙烯酸酯(2,2,2-trifluoroethyl methacrylate, TFEMA),因為它有許多獨特的特性,例如:表面張力低、不沾性及化學和熱的穩定性。
將製備好的共聚物藉由滴塗層法(drop-coating)塗佈於鈦表面並加熱,使其進行鍵結反應。合成之共聚物藉由核磁共振光譜儀(nuclear magnetic resonance spectroscopy, NMR)做組成分析及基本性質鑑定。改質完鈦金屬表面的親疏水性及表面元素組成的分析則利用表面接觸角(contact angle, CA)和電子能譜儀(X-ray photoelectron spectroscopy, XPS)。此外,表面的血液相容性是用體外血小板貼附實驗來探討。
綜合各實驗結果,最佳血液相容性表面是由兩種單體VPA及TFEMA莫耳進料比為7:3聚合物改質而成的,展現出低的接觸角、數量少和未活化的血小板貼附。在此研究中,藉由簡單的滴塗層法和加熱成功在鈦金屬表面上製備出穩定的共價鍵結,具備改善現今市售鈦金屬生醫材料的淺力。
Although widely being used in biomedical fields, the titanium-based materials still face many challenges in hemocompatibility. To overcome this problem, a new surface modification method for improving hemocompatibility of titanium was attempted. In this work, a series of random copolymers with hydrophobic and hydrophilic monomers have been synthesized by traditional free radical copolymerization. The hydrophilic monomer, vinyphosphonic acid (VPA), was selected because it is not only very hydrophilic but also carrying the phosphonic acid groups that can impart covalent binding to the titanium surfaces after heating. The hydrophobic monomer, 2, 2, 2-trifluoroethyl methacrylate (TFEMA), was chosen because it contains several unique properties, such as low surface tension as well as the chemical and thermal stability. These polymers’ coatings were formed on titanium surfaces using drop-coating method followed by heating for the formation of a covalent-bound surface layer. These copolymers were analyzed with NMR, FTIR and EDS. The surface characteristics of these coating layers were examined by contact angle, SEM and XPS. Furthermore, the hemocompatibility of surface was characterized through in vitro platelets adhesion testing. The optimized coating surface was the polymer formed with the monomer feeding ratio of VPA: TFEMA=7:3, which showed low contact angle, less and non-activated platelets adhesion. This work successfully fabricated a stable surface on titanium by simply drop-coating and heating, and the surface was of potential for improving the platelet compatibility of titanium-based biomaterials.
1. Klos, K.; Sauer, S.; Hoffmeier, K.; Gras, F.; Frober, R.; Hofmann, G.O.; Muckley, T. Biomechanical Evaluation of Plate Osteosynthesis of Distal Fibula Fractures with Biodegradable Devices, Foot Ankle Int., 2009, 30, 243-251.
2. Moe, K.S.; Weisman, R.A. Resorbable fixation in facial plastic and head and neck reconstructive surgery: An initial report on polylactic acid implants, Laryngoscope, 2001, 111, 1697-1701.
3. Thurston, T.E.; Andrades, P.; Phillips, R.A.; Ray, P.D.;Grant, J.H. Safety Profile of Wire Osteosynthesis in Craniosynosyosis Surgery, J. Craniofac. Surg., 2009, 20(4), 1154-1158.
4. Buddy D. Ratner, Biomaterials Science: An Introduction to Materials in Medicine, Elsevier, 2004.
5. Jonathan Black, Biological Performance of Materials, Taylor&Francis, 2006.
6. 林峰輝編修, 生物醫用材料, 文京出版社, 2004.
7. 王盈錦編著, 生物醫學材料, 合記出版社, 2002.
8. Castner, D.G.; Ratner, B.D.Biomedical surface science: Foundations to frontiers, Surface Science, 2002, 500(1–3), 28-60.
9. Liu, X.; Chu, P.K.; Ding, C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, 2004, 47(3–4), 49-121.
10. Viornery, C.; Guenther, H.L.; Aronsson, B.O.; Péchy, P.; Descouts, P.; Grätzel, M., Osteoblast culture on polished titanium disks modified with phosphonic acids, Journal of Biomedical Materials Research,2002, 62(1), 149-155.
11. Liu, X.Y.; Chu, P K.; Ding, C.X. Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mat Sci Eng R, 2004, 47(3-4), 49-121.
12. Branemark, P. I.; Hansson, B. O.; Adell, R.; Breine, U.; Lindstrom, J.; Hallen, O.; Ohman, A. Osseo-Integrated Implants in Treatment of Edentulous Jaw - Experience from a 10-Year Period, Scand J Plast Recons, 1977, 7-132.
13. Ehrenfest, D. M. D.; Coelho, P. G.; Kang, B. S.; Sul, Y. T.; Albrektsson, T. Classification of osseointegrated implant surfaces: materials, chemistry and topography, Trends Biotechnol , 2010, 28(4), 198-206.
14. Harris, L.G.; Richards, R.G. Staphylococci and implant surfaces: a review, Injury, 2006, 37 Suppl 2, S3-14.
15. Brunette, D. M.; Tengvall, P.; Textor, M.; Thomsen, P. Titanium in Medicine, Springer, 2001.
16. Carpenter, A.W.; Schoenfisch, M.H. Nitric oxide release: part II. Therapeutic applications, Chemical Society reviews, 2012, 41(10), 3742-52.
17. Els Vanderleyden, S. M., Jan Luyten and Peter Dubruel. Implantable (Bio)Polymer Coated Titanium Scaffolds: A Review, Current Pharmaceutical Design, 2012, 18, 2576-2590.
18. Ding, W.F.; Xu, J.H.; Chen, Z.Z.; Su, H.H.; Fu, Y.C. Grain wear of brazed polycrystalline CBN abrasive tools during constant-force grinding Ti–6Al–4V alloy , The International Journal of Advanced Manufacturing Technology, 2010,52(9-12),969-976.
19. Bromark, A.; Larsson, M.; Hedenqvist, P.; Hedenqvist, S. Wear of PVD Ti/TiN multilayer coatings, Surface and Coatings Technology, 1997, 90(3), 217-223.
20. Che Haron, C.H.; Ginting, A.; Arshad, H. Performance of alloyed uncoated and CVD-coated carbide tools in dry milling of titanium alloy Ti-6242S, Journal of Materials Processing Technology, 2007,185(1-3),77-82
21. Lausmaa, J.; Kasemo, B.; Mattsson, H.; Odelius, H. Multi-technique surface characterization of oxide films on electropolished and anodically oxidized titanium, Applied Surface Science,1990,45,189-200.
22. Ostuni , E.; Chapman, R. G.; Holmlin, R. E.; Takayama, S.; Whitesides , G. M. A Survey of structure−property relationships of surfaces that resist the adsorption of protein, Langmuir , 2001, 17(18), 5605-5620.
23. Prime, K. L.; Whitesides , G. M. Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces, Science, 1991, 252(5009), 1164-1167.
24. Ye, S. H.; Johnson, C. A., Jr.; Woolley, J. R.; Oh, H. I.; Gamble, L. J.; Ishihara, K.; Wagner, W. R. Surface modification of a titanium alloy with a phospholipid polymer prepared by a plasma-induced grafting technique to improve surface thromboresistance, Colloids and surfaces. B, Biointerfaces, 2009, 74(1), 96-102.
25. Holmlin, R. E.; Chen, X.; Chapman, R. G.; S., T.; Whitesides, G. M. Zwitterionic SAMs that Resist Nonspecific Adsorption of Protein from Aqueous Buffer, Langmuir, 2001, 17, 2841-2850.
26. Jung, S.-C.; Lee, K.; Kim, B.-H. Biocompatibility of plasma polymerized sandblasted large grit and acid titanium surface, Thin Solid Films, 2012, 521(0), 150-154.
27. Chen, J. L.; Chen, C.; Chen, Z. Y.; Chen, J. Y.; Li, Q. L.; Huang, N. Collagen/heparin coating on titanium surface improves the biocompatibility of titanium applied as a blood-contacting biomaterial, J Biomed Mater Res A, 2010, 95A(2), 341-349.
28. Tebbe, D.; Thull, R.; Gbureck, U. Influence of spacer length on heparin coupling efficiency and fibrinogen adsorption of modified titanium surfaces, Biomed Eng Online, 2007, 6.
29. Maddikeri, R. R.; Tosatti, S.; Schuler, M.; Chessari, S.; Textor, M.; Richards, R. G.; Harris, L. G. Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: A first step toward cell selective surfaces, J Biomed Mater Res A, 2008, 845(2), 425-435.
30. Huang, N. P.; Csucs, G.; Emoto, K.; Nagasaki, Y.; Kataoka, K.; Textor, M.; Spencer, N. D. Covalent attachment of novel poly(ethylene glycol)-poly(DL-lactic acid) copolymeric micelles to TiO2 surfaces, Langmuir, 2002, 18(1), 252-258.
31. Ye, S. H.; Johnson, C. A.; Woolley, J. R.; Oh, H. I.; Gamble, L. J.; Ishihara, K.; Wagner, W. R. Surface modification of a titanium alloy with a phospholipid polymer prepared by a plasma-induced grafting technique to improve surface thromboresistance, Colloid Surface B, 2009, 74(1), 96-102.
32. Ye, S. H.; Johnson, C. A., Jr.; Woolley, J. R.; Snyder, T. A.; Gamble, L. J.; Wagner, W. R. Covalent surface modification of a titanium alloy with a phosphorylcholine-containing copolymer for reduced thrombogenicity in cardiovascular devices, Journal of biomedical materials research. Part A, 2009, 91(1), 18-28.
33. Ye, S. H.; Johnson, C. A.; Woolley, J. R.; Murata, H.; Gamble, L. J.; Ishihara, K.; Wagner, W. R. Simple surface modification of a titanium alloy with silanated zwitterionic phosphorylcholine or sulfobetaine modifiers to reduce thrombogenicity, Colloid Surface B , 2010, 79(2), 357-364.
34. Nie, F. Q.; Xu, Z. K.; Ye, P.; Wu, J.; Seta, P. Acrylonitrile-based copolymer membranes containing reactive groups: effects of surface-immobilized poly(ethylene glycol)s on anti-fouling properties and blood compatibility, Polymer, 2004, 45(2), 399-407.
35. Han, W.; Gregor, H. P.; Eli, M. Pearce. Interaction of proteins with ultrafiltration membranes: Development of a nonfouling index test, Journal of Applied Polymer Science , 2000, 77(7), 1600-1606.
36. Wang, P.; Tan, K. L.; Kang, E. T.; NeohJ, K. G. Antifouling poly(vinylidene fluoride) microporous membranes prepared via plasma-induced surface grafting of poly(ethylene glycol), Adhesion Sci. Technol, 2002, 16, 111-127.
37. Chen, Y. W.; Liu, D. M.; Deng, Q. L.; He, X. H.; Wang, X. F. Atom transfer radical polymerization directly from poly(vinylidene fluoride): Surface and antifouling properties, Journal of Polymer Science Part a-Polymer Chemistry, 2006, 44(11), 3434-3443.
38. Chapman, R. G.; Ostuni, E.; Takayama, S.; Holmlin, R. E.; Yan, L.; Whitesides, G. M. Surveying for surfaces that resist the adsorption of proteins, J Am Chem Soc, 2000, 122(34), 8303-8304.
39. Konradi, R.; Pidhatika, B.; Muhlebach, A.; Textort, M. Poly-2-methyl-2-oxazoline: A peptide-like polymer for protein-repellent surfaces, Langmuir, 2008, 24(3), 613-616.
40. Iwasaki, Y.; Saito, N. Immobilization of phosphorylcholine polymers to Ti-supported vinyldimethylsilyl monolayers and reduction of albumin adsorption, Colloids and Surfaces B: Biointerfaces, 2003, 32(1), 77-84.
41. Sang-Ho, Y.; Johnson Jr, C. A.; Woolleya, J. R.; Murataa, H.; Gamblee, L. J.;Ishihara, K.; Wagner, W. R. Simple surface modification of a titanium alloy with silanated zwitterionic phosphorylcholine or sulfobetaine modifiers to reduce thrombogenicity, Colloids and Surfaces B: Biointerfaces, 2010,79(2), 357-364.
42. Chang, Y.; Chen, S.; Zhang, Z.; Jiang, S. Highly Protein-Resistant Coatings from Well-Defined Diblock Copolymers Containing Sulfobetaines, Langmuir, 2006, 22, 2222-2226.
43. Mahmud, G.; Huda, S.; Yang, W.; Kandere-Grzybowska, K.; Pilans, D.; Jiang, S.; Grzybowski, B. A. Carboxybetaine Methacrylate Polymers Offer Robust, Long-Term Protection against Cell Adhesion, Langmuir, 2011, 27 (17), 10800–10804.
44. Zhang, Z. T.; Chao, S. F.; Jiang S. Y. Superlow fouling sulfobetaine and carboxybetine polymers on glass slides, Langmuir, 2006, 22, 10072-10077.
45. Jones, M. I.; McColl, I. R.; Grant, D. M.; Parker, K. G.; Parker, T. L. Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardiovascular applications, J Biomed Mater Res, 2000, 52(2), 413-421.
46. Yuhta, T.; Kikuta, Y.; Mitamura, Y.; Nakagane, K.; Murabayashi, S.; Nishimura, I. Blood Compatibility of Sputter-Deposited Alumina Films, J Biomed Mater Res, 1994, 28, (2), 217-224
47. Dion, I.; Baquey, C.; Havlik, P.; Monties, J. R., A New Model to Test Platelet-Adhesion under Dynamic Conditions - Application to the Evaluation of a Titanium Nitride Coating, Int J Artif Organs, 1993, 16(7), 545-550.
48. Kim, D. J.; Lee, J. M.; Park, Jin-Goo.; Chung, B. G. A Self-Assembled Monolayer-Based Micropatterned Array for Controlling Cell Adhesionand Protein Adsorption, Biotechnology and Bioengineering, 2011, 108(5), 1194-1202.
49. Li, P.; Li, L.; Wang, W.; Jin, W.; Liu, X.; Yeung, Kelvin W. K.; Chu, P. K. Enhanced corrosion resistance and hemocompatibility of biomedical NiTi alloy by atmospheric-pressure plasma polymerized fluorine-rich coating, Applied Surface Science, 2014, 297, 109-115.
50. Yamada, Y.; Tanaka, K.; Saito, K. Friction and damage of coatings formed by sputtering polytetrafluoroethylene and polyimide, Surface and Coatings Technology, 1990, 43-44, 618-628.
51. Pezzatini, S.; Morbidelli, L.; Gristina, R.; Favia, P.; Ziche, M. A nanoscale fluorocarbon coating on PET surfaces improves the adhesion and growth of cultured coronary endothelial cells, Nanotechnology, 2008, 19, 1-7.
52. Yuan, S.; Pehkonen, S. O.; Liang, B.; Neoh, K. G.; Neoh, K. G.; Kang, E. T. Superhydrophobic fluoropolymer-modified copper surface via surface graft polymerisation for corrosion protection, Corrosion Science, 2011, 53, 2738–2747.
53. Inoue, Y.; Watanabe, J.; Takai, M.; Ishihara, K. Surface characteristics of block-type copolymer composed of semi-fluorinated and phospholipid segments synthesized by living radical polymerization, Journal of Biomaterials Science,Polymer Edition, 2004, 15(9), 1153-1166.
54. Rezania, A.; Johnson, R.; Lefkow, A. R.; Healy, K. E. Bioactivation of metal oxide surfaces.1.Surface characterization and cell response, Langmuir, 1999, 15(20), 6931-6939.
55. Xiao, S. J.; Textor, M.; Spencer, N. D.; Sigrist, H. Covalent attachment of cell-adhesive, (Arg-Gly-Asp)-containing peptides to titanium surfaces, Langmuir, 1998, 14(19), 5507-5516.
56. Pegg, E. C.; Walker, G. S.; Scotchford, C. A.; Farrar, D.; Grant, D. Mono-functional aminosilanes as primers for peptide functionalization, J Biomed Mater Res A, 2009, 90A(4), 947-958.
57. Gawalt, E. S.; Avaltroni, M. J.; Koch, N.; Schwartz, J. Self-assembly and bonding of alkanephosphonic acids on the native oxide surface of titanium, Langmuir, 2001, 17(19), 5736-5738.
58. Gawalt, E. S.; Avaltroni, M. J.; Danahy, M. P.; Silverman, B. M.; Hanson, E. L.; Midwood, K. S.; Schwarzbauer, J. E.; Schwartz, J. Bonding organics to Ti alloys: Facilitating human osteoblast attachment and spreading on surgical implant materials corrections, Langmuir, 2003, 19(17), 7147-7147.
59. Adden, N.; Gamble, L. J.; Castner, D. G.; Hoffmann, A.; Gross, G.; Menzel, H. Phosphonic acid monolayers for binding of bioactive molecules to titanium surfaces, Langmuir, 2006, 22(19), 8197-8204.
60. Schwartz, J.; Avaltroni, M. J.; Danahy, M. P.; Silverman, B. M.; Hanson, E. L.; Schwarzbauer, J. E.; Midwood, K. S.; Gawalt, E. S. Cell attachment and spreading on metal implant materials, Mat Sci Eng C-Bio S, 2003, 23(3), 395-400.
61. Lu, G.; Bernasek, S. L.; Schwartz, J. Oxidation of a polycrystalline titanium surface by oxygen and water, Surf Sci, 2000, 458(1-3), 80-90.
62. Silverman, B. M.; Wieghaus, K. A.; Schwartz, J. Comparative properties of siloxane vs phosphonate monolayers on a key titanium alloy, Langmuir, 2005, 21(1), 225-228.
63. Mutin, P. H.; Guerrero, G.; Vioux, A. Hybrid materials from organophosphorus coupling molecules, Journal of Materials Chemistry, 2005, 15(35-36), 3761.
64. Zoulalian, V.; Monge, S.; Zurcher, S.; Textor, M.; Robin, J. J.; Tosatti, S. Functionalization of titanium oxide surfaces by means of poly(alkyl-phosphonates), J Phys Chem B, 2006, 110(51), 25603-25605.
65. Marcinko, S.; Fadeev, A. Y. Hydrolytic stability of organic monolayers supported on TiO2 and ZrO2, Langmuir, 2004, 20(6), 2270-2273.
66. Goldberg, S.; Sposito, G. A Chemical-Model of Phosphate Adsorption by Soils.1.Reference Oxide Minerals, Soil Sci Soc Am J, 1984, 48(4), 772-778.
67. Guerrero, G.; Mutin, P. H.; Vioux, A. Anchoring of phosphonate and phosphinate coupling molecules on titania particles, Chem Mater, 2001, 13(11), 4367-4373.
68. Stumm, W. The Inner-Sphere Surface Complex - a Key to Understanding Surface Reactivity, Adv Chem Ser, 1995, 244, 1-32.
69. Muljadi, D.; Posner, A. M.; Quirk, J. P. Mechanism of Phosphate Adsorption by Kaolinite Gibbsite and Pseudoboehmite.2. Location of Adsorption Sites. J Soil Sci, 1966, 17(2), 230-.
70. Rajan, S. S. S. Adsorption of Divalent Phosphate on Hydrous Aluminum-Oxide, Nature, 1975, 253(5491), 434-436.
71. Mavis, B.; Tas, A. C. Dip Coating of Calcium Hydroxyapatite on Ti-6Al-4V Substrates, Communications of the American Ceramic Society, 2000,83(4), 989–91.
72. Chu, S.; Hu, X.; Du, C.; Wu, X.; Dai, Y.; Hu, L.; Deng, J.; Feng, Y. Open space for the physisorption of H2: Cointercalation of graphite with Li, Ti metal atoms and ethylene molecules, Internatial journal of hydrogen energy, 2010,35, 1280- 1284.
73. Wang, Y.; Kim, J. H.; Choo, K. H.; Lee, Y. S.; Lee, C. H. Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization, Journal of Membrane Science, 2000,169(2), 269-276.
74. Irie, H.; Miura, S.; Kamiya, K.; Hashimoto, K. Efficient visible light-sensitive photocatalysts: Grafting Cu(II) ions onto TiO2 and WO3 photocatalysts, Chemical Physics Letters, 2008, 457(1-3), 202-205.
75. Barthélémy, B.; Devillers, S.; Minet, I.; Delhalle, J.; Mekhalf, Z. Induction heating for surface triggering styrene polymerization on titanium modified with ATRP initiator, Journal of Colloid and Interface Science, 2011, 354(2), 873-879.
76. 王建國編著, 高分子成新技術, 化學工業出版社.
77. L.G. Wade Organic Chemistry 5th Ed, Mechanism supplements original, 319.
78. 何敏夫, 血液學, 合記出版社, 1993.
79. http://www.chelationtherapyonline.com/GarryGordon/KarlLorenResearch/p32.html.
80. Ko, T. M.; Lin, J. C.; Cooper, S. L. Surface characterization and platelet-adhesion studies of plasma-sulfonated polyethylene, Biomaterials, 1993, 14, 657-664.
81. Graaff KWVD and Fox SI, Circulatory System: Blood, in: Concepts of Human Anatomy and Physiology, 531-542.
82. Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis. 6 ed. 2007, Thomson.
83. 邱正宇, 掃描式電子顯微鏡簡介. 國立成功大學奈米中心.
84. Daniel C. Harris. Quantitative Chemical Analysis, Sixth edition, 2003.
85. L. H. Sperling. Introduction to Physical Polymer Science, Fourth edition, 2006.
86. Ratner, B. D.; Castner, D. G. Edited by Vickerman, J. C.; Wiely, J.; Sons Electron Spectroscopy for Chemical Analysis, Surface Analysis-The Principal Technique, 1997,Chapter3, 43-98.
87. Briggs, D.; Seah, M. P.; Wiely, J.; Sons. Quantification of AES and XPS, Practical Surface Analysis Vol.1, 1990, Chapter5, 201-256.
88. Chappuis, J. Edited by Hewitt, G. F.; Delhaye, J. M.; Zuber, N. Contact Angles, Multiphase Science and Technology, 1982, Chapter4, 47-505.
89. Millaruelo, M.; Steiert, V.; Komber, H.; Klopsch, R.; Voit, B. Synthesis of Vinylphosphonic Acid Anhydrides and their Copolymerizationwith Vinylphosphonic Acid, Macromoleclar Chemistry and Physics, 2008, 209,366-374.
90. Zhang, C.; Liu, Y.; Wen, S.; Wang, S. Poly(vinylphosphonic acid) (PVPA) on Titanium Alloy Acting as Effective Cartilage-like Superlubricity Coatings, Applied Materials&Interfaces, 2014, 6, 17571-17578.
91. Hinchiranan, N. ; Wannako, P. ; Paosawatyanyong, B. ; Prasassarakich, P. 2,2,2-Trifluoroethyl methacrylate-graft-natural rubber: Synthesis and application as compatibilizer in natural rubber/fluoroelastomer blends. Materials Chemistry and Physics, 2013, 139, 689-698.
92. Cracows, J. M.; Montembault, V.; Ameduri, B. Free-Radical Copolymerization of 2,2,2-Trifluoroethyl Methacrylate and 2,2,2-Trichloroethyl a-Fluoroacrylate: Synthesis, Kinetics of Copolymerization, and Characterization. Journal of Polymer Science: Part A: Polymer Chemistry, 2010, 48, 2154-2161.
93. Kwon, S.; Bae, W.; Kim, H. The Effect of CO2 in Free-radical Polymerization of 2,2,2-Trifluoroethyl Methacrylate, Korean J. Chem. Eng., 2004, 21(4), 910-914.
94. Hinchiranan, N.; Wannako, P.; Paosawatyanyong, B.; Prasassarakich, P. 2, 2, 2-Trifluoroethyl methacrylate-graft-natural rubber: Synthesis and application as compatibilizer in natural rubber/fluoroelastomer blends, Materials Chemistry and Physics, 2013, 139, 689-698.
95. Aslan, A.; Gölcük, K.; Bozkurt, A. Nanocomposite polymer electrolytes membranes based on Poly(vinylphosphonic acid)/SiO2, J Polym Res, 2012,19-22, 1-8.
96. Erdemi, H.; Bozkurt, A. Synthesis and characterization of poly(vinylpyrrolidone-co-vinylphosphonic acid) copolymers, European Polymer Journal, 2004, 40, 1925-1929.
97. Jouan, P. Y.; Peignon, M. C.; Cardinad, C.; Lemperiere, G. Characterisation of TiN coatings and of the TiNSi interface by X-ray photoelectron spectroscopy and Auger electron spectroscopy, Applied Srface Science, 1993, 68, 595-603.
98. Viornery, C.; Chevolot, Y.; Léonard, D.; Aronsson, B.r.; Péchy, P. t.; Mathie, H. J.; Descouts, P. ;Grätzel, M. Surface Modification of Titanim with Phosphonic Acid To Improve Bone Bonding:Characterization by XPS and ToF-SIMS, Langmuir, 2002,18, 2582-2589.
99. Zorn, G.; Gotman, I.; Gutmanas, E. Y.; Adadi, R.; Salitra, G.; Sukenik, C.N. Surface Modification of Ti45Nb Alloy with an Alkylphosphonic Acid Self-Assembled Monolayer, Chem. Mater, 2005, 17, 4218-4226.
100. Schuetzle, D.; Carter, R. O.; Shyu, J.; Dickie, R. A.; Holubka, J.; McIntyre, N. S. The Chemical Interaction of Organic Materials with Metal Substrates. Part I: ESCA Studies of Organic Phosphate Films on Steel, Appl. Spectrosc, 1986, 40 (5), 641-649.
101. Suh, T. S.; Joo, C. K.; Kim, Y. C.; Lee, M. S.; Lee, H. K.; Choe, B. Y.; Chun, H. J. Surface modification of polymethyl methacrylate intraocular lenses with the mixture of acrylic acid and acrylamide via plasma-induced graft copolymerization, Journal of Applied Polymer Science, 2002, 85(11), 2361-2366.
102. Reinholdt, M.; Ilie, A.; Roualdès, S.; Frugier, J.; Schieda, M.; Coutanceau, C.; Martemianov, S.; Flaud, V.; Beche, E.; Durand, J. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells, Membranes, 2012, 2(4), 529-552.
103. Erdem, B.; Hunsicker, R. A.; Simmons, G. W.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S. XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation, Langmuir , 2001, 17(9), 2664-2669.
104. Park, J. H.; Aluru, N. R. Temperature-dependent wettability on a titanium dioxide surface, Molecular Simulation, 2009, 35, 31-37.
105. Stevens, N.; Priest, C. I.; Sedev, R.; Ralston, J. Wettability of Photoresponsive Titanium Dioxide Surface, Langmir, 2003, 19, 3272-3275.
106. Tang, L.; Wu, Y.; Timmons, E. B. Fibrinogen adsorption and host tissue responses to plasma functioalized surfaces, J Biomed Mater Res,1998,42(1), 156-163.