簡易檢索 / 詳目顯示

研究生: 楊雅如
Yang, Ya-Ru
論文名稱: 第一原理方法研究加壓鐵、鈷、鎳塊材的區域與游移磁矩
Localized and itinerant magnetic moments in compressed Fe, Co and Ni: ab initio study
指導教授: 鄭靜
Cheng, Ching
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 77
中文關鍵詞: 壓力區域游移磁矩
外文關鍵詞: pressure, Fe, Co, Ni, localized, itinerant, magnetic moments
相關次數: 點閱:53下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 應用基於密度泛函理論的第一原理方法研究壓力對鐵、鈷、鎳 (包含bcc,fcc和hcp結構)的電子性質和磁性性質的影響。隨著壓力的增加,發現系統的鐵磁磁矩會緩慢減少,也會急劇減少。然而Stoner理論只預期了游移 (itinerant) 磁矩隨著壓力的緩慢變化,這也說明磁矩隨著壓力增加的急劇減少必然為區域磁矩的表徵。此外,加壓下的自旋電荷密度變化也顯示了區域磁矩不同於游移磁矩的急劇減少。
    藉由焓的計算來計算出系統在加壓底下可能發生的結構相變,如此實驗上所觀察到的鐵的相變和鈷的相變都可以準確地的被估計出來。此外也發現鎳的hcp結構在87GPa時,會相變到非磁性的fcc結構。最後還證明fcc結構的鈷在加壓過程中,可以不伴隨任何結構相變而發生一階磁相變。

    The effect of pressure on the electronic and magnetic property of bcc, fcc and hcp structures of Fe, Co and Ni are studied by using density functional theory based first-principles method. Both gradual decrease and abrupt drop for the ferromagnetic moment of the systems under compression are observed. However, the Stoner theory predicts only the gradual decrease behavior for spin-polarized itinerant electron gas, which suggests that the observed abrupt drop in magnetism with increasing pressure is a response to the localized magnetic moments. Analyses of the spin-charge density distribution show that the abrupt drop corresponds to the vanishing localized magnetic moments in contrast to the gradual decrease for the itinerant magnetic moments. The enthalpy of these studied systems is evaluated to determine the pressure-induced structural phase transitions. The experimentally observed high-pressure iron bcc to hcp and cobalt hcp to fcc phase transition is correctly reproduced and is predicted to occur from a ferromagnetic phase to a nonmagnetic phase. In addition the results also predict that nickel could undergo a phase transition from the ferromagnetic hcp phase to the nonmagnetic fcc phase at around 87 GPa. Finally, the first-order magnetic phase transition without any structural phase transition accompanying it is found to occur in fcc Co.

    誌謝 (Acknowledgement) I 摘要 III Abstract IV Content V List of tables VIII List of figures IX Chapter 1. Introduction 1 Chapter 2. Computational method 3 2.1 Density-functional theory (DFT) 3 2.1.1 The Hohenberg-Kohn (HK) theorems 4 2.1.2 The self-consistent Kohn-Sham (KS) equations 7 2.2 Approximation for Exc[n] 9 2.3 Brillouin zone integration 11 2.3.1 Partial occupation 11 2.3.2 Fermi and Gaussian smearing 12 2.3.3 Methfessel-Paxton smearing 13 2.3.4 Linear tetrahedral method 16 2.4 Force (Hellmann-Feynman) theorem 23 2.5 Stress (generalized viral) theorem 27 2.6 The flow-chart of VASP 31 Chapter 3. Bulk properties 33 3.1 Smearing method, k-point mesh, ENCUT and error bar 33 3.2 Iron 36 3.3 Cobalt 40 3.4 Nickel 42 Chapter 4. Pressure dependence of magnetic configurations 43 4.1 Magnetism 44 4.2 Pressure dependence of itinerant magnetism in Fe, Co and Ni 50 4.3 Density of states, occupation and energy shift in d band 55 4.4 Spin-charge density distributions 62 Chapter 5. High-pressure phase transition 64 5.1 Enthalpy 64 5.2 Phase transition and magnetism 69 5.3 The first-order magnetic phase transition in ferromagnetic fcc cobalt 70 Chapter 6. Conclusion 73 Appendix A 74 Bibliography 76

    [1]. W. Heisenberg, Z. Phys. 38, 411 (1926)
    [2]. E. C. Stoner, Proc. R. Soc. London Ser. A 169, 339 (1939)
    [3]. V. Korenman, J. L. Murray, and R. E. Prange, Phys. Rev. B 16, 4032 (1977)
    [4]. J. Hubbard, Phys. Rev. B 19, 2626 (1979)
    [5]. J. Hubbard, Phys. Rev. B 20, 4584 (1979)
    [6]. J. Hubbard, Phys. Rev. B 23, 5974 (1981)
    [7]. V. L. Moruzzi, P. M. Marcus, K. Schwarz and P. Mohn, Phys. Rev. B 34, 1784 (1986)
    [8]. V. L. Moruzzi and P. M. Marcus, Phys. Rev. B 38, 1613 (1988)
    [9]. M. Podgorny and J. Goniakowski, Phys. Rev. B 42, 6683 (1990)
    [10]. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
    [11]. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994)
    [12]. W. Kohn, Rev. Mod. Phys. 71, 1253 (1999)
    [13]. E. Fermi, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat. Rend. 6, 602 (1927).
    [14]. L. H. Thomas, Proc. Cambridge Philos. Soc. 23, 542 (1927).
    [15]. Hohenberg, P., and W. Kohn, Phys. Rev. 136, B864 (1964)
    [16]. Kohn, W., and L. J. Sham, Phys. Rev. 140, A1133 (1965)
    [17]. Wigner, E. P., Trans. Faraday Soc. 34, 678 (1938)
    [18]. Ceperley, D. M., Phys. Rev. B 18, 3126 (1978)
    [19]. Ceperly, D. M., and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980)
    [20]. J. P. Perdew, in Electronic Structure of Solids ‘91, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin,1991), p. 11.
    [21]. D.J Chadi and Marvin L. Cohen, Phys. Rev. B 8, 5747 (1973)
    [22]. Hendrik J. Monkhorst, and James D. Pack, Phys. Rev. B 13, 5188 (1976)
    [23]. M. Methfessel, and A. T. Paxton, Phys. Rev. B 40, 3616 (1989)
    [24]. G. Lehmann and M. Taut, Phys. Status Solidi B 54, 469 (1972)
    [25]. P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16223 (1994)
    [26]. R. P. Feynman, Phys. Rev. B 56, 340 (1939)
    [27]. O. H. Nielsen, and Richard M. Martin, Phys. Rev. Lett. 50, 697 (1983)
    [28]. O. H. Nielsen, and Richard M. Martin, Phys. Rev. Lett. 32, 3780 (1985)
    [29]. H. C. Herper et al., Phys. Rev. B 60, 3839 (1999)
    [30]. M. Acet, H. Zähres, E. F. Wassermann, and W. Pepperhoff, Phys. Rev. B 49, 6012 (1994)
    [31]. V. L. Moruzzi, Phys. Rev. B 41, 6939 (1990)
    [32]. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996)
    [33]. N. D. Lang, and H. Ehrenreich, Phys. Rev. 168, 605 (1968)
    [34]. J. Mathon, J. Phys. F: Met. Phys. 2 159 (1972)
    [35]. Volker Heine, Phys. Rev. 153, 673 (1967)
    [36]. M. Ekman, B. Sadigh, K. Einarsdotter, and P. Blaha, Phys. Rev. B 58, 5296 (1998)
    [37]. Valentin lota., Jae-Hyun Park Klepeis, and Choong-Shik Yoo, Phys. Rev. Lett. 90, 042505 (2007)

    無法下載圖示 校內:2015-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE