| 研究生: |
吳政賢 Wu, Cheng-Hsien |
|---|---|
| 論文名稱: |
具微結構氧化銅鉍之合成、鑑定及在電化學葡萄糖感測器與光電化學產氫之應用 Microstructured CuBi2O4: Synthesis, Characterization and Applications in Electrochemical Glucose Sensor and Photoelectrochemical Hydrogen Evolution |
| 指導教授: |
林家裕
Lin, Chia-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 化學溶液沉積法 、氧化銅鉍 、葡萄糖感測器 、光電化學產氫 |
| 外文關鍵詞: | Chemical bath deposition, Copper bismuth oxide, Glucose sensor, Photoelectrochemical hydrogen evolution |
| 相關次數: | 點閱:111 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,我們詳細探討以氧化銅鉍為主之修飾電極的製備方法以及其應用於電催化葡萄糖氧化(第三章)與光電化學產氫之應用(第四章)。所製備氧化銅鉍修飾電極的表面形貌及結構、晶相、化學組成、光學性質以及電化學催化性質係利用掃描式及穿透式電子顯微鏡、X光繞射儀、紫外光至可見光吸收光譜、循環伏安法、線性掃描伏安法、計時電流分析法以及電化學阻抗等技術來進行分析。
在第三章中,我們透過電鍍方法先將奈米片狀之氧化鉍碘電鍍在透明導電電極上,再利用滴鍍法將含有銅離子的醇類溶液滴鍍在碘氧化鉍上,最後經由熱處理將其轉換成氧化銅奈米粒子修飾之具奈米樹枝狀氧化銅鉍。藉由調整滴鍍液體積,我們可以控制不同轉換程度與對葡萄糖氧化催化能力。本研究顯示氧化銅以及氧化銅鉍分別對葡萄糖氧化都有催化活性,然而,當兩者形成樹枝狀孔洞型複合材料時,由於協同作用我們發現其催化活性比純質氧化銅或氧化鉍還優越,在詳細探討其催化機制後,結果顯示此複合材料能夠作為良好的葡萄糖感測材料。
在第四章中,我們先利用旋轉塗布法,將含有銅鉍離子之醇類溶液塗布在透明導電電極上,並經過熱處理製備氧化銅鉍晶種層,接著利用化學沉積法將氧化銅鉍微米柱成長於晶種層上,形成陣列式柱狀氧化銅鉍修飾電極。我們詳細探討晶種層製備條件,包括鍍液組成和鍛燒溫度效應,與化學沉積溶液的組成與成長時間等,並經過參數最佳化後,我們合成出長1.2微米、寬0.25微米、高寬比4.8的氧化銅鉍微柱。在光電化學產氫之應用方面,在光照下、除氧電解液中,氧化銅鉍微柱出現了光腐蝕現象,然而,在富氧電解液中,氧化銅鉍展現了良好的光電流以及穩定性。這個結果顯示表面反應之反應動力對氧化銅鉍微柱的光電催化行為有著極大的關聯。因此我們利用電鍍方法將鎳硼化合物修飾在氧化銅鉍表面,作為產氫之共觸媒,發現鎳硼化合物對氧化銅鉍的光腐蝕有些微抑制的效果,然而,更多表面修飾相關研究仍須被詳細探討以達到更高的光電極穩定性。
In this study, copper bismuth oxide (CuBi2O4) based modified electrodes were fabricated and their applications in electrocatalytic oxidation of glucose (Chapter 3) and photoelectrochemical (PEC) hydrogen generation (Chapter 4) were thoroughly investigated. Surface morphology, structure, crystal phase, chemical composition, optical properties, and electrocatalytic properties of the fabricated CuBi2O4 based modified electrodes were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, UV-vis spectroscopy, cyclic voltammetry, linear sweep voltammetry, chronoamperometry, and electrochemical impedance spectroscopy.
In chapter 3, a chemically modified electrode, consisting of CuO nanoparticles decorated nano-dendrite-structured CuBi2O4 (nanoCuBi2O4|CuO), was fabricated by firstly electrodepositing BiOI nanosheet array (nanoBiOI) on the flourine-doped tin oxide coated glass substrate, followed by its conversion into nanoCuBi2O4|CuO via drop-casting a ethanolic Cu2+ solution and follow-up thermal treatment. The degree of conversion of nanoBiOI into nanoCuBi2O4|CuO and electrocatalytic activites of resultant nanoCuBi2O4|CuO were controlled by adjusting the dosage of the ethanolic Cu2+ precursor solution. It was found that both CuO and CuBi2O4 are active in electrocatalyzing the oxidation of glucose, but the porous structure of nanoCuBi2O4|CuO along with the synergistic catalytic enhancement, exerted by CuBi2O4 and CuO, renders nanoCuBi2O4|CuO superior electrocatalytic activity than CuO or CuBi2O4 alone. The mechanism of electrocatalytic oxidation of glucose on nanoCuBi2O4|CuO is proposed. Finally, the sensing characteristics of nanoCuBi2O4|CuO was evaluated, and the results indicate nanoCuBi2O4|CuO is a promising sensing material for the electrochemical detection of glucose.
In Chpater 4, CuBi2O4 microrods (microCuBi2O4) modified electrodes were prepared by firstly depositing a seed layer via spin-coating and follow-up thermal annealing, followed by growth of microCuBi2O4 using chemical bath deposition (CBD) process. Important parameters in tuning of microstructure of microCuBi2O4 modified electrode, including concentration of Cu2+/Bi3+ and chelating reagent of precursor solution and annealing temperature for seed layer preparation, thickness of seed layer, and the concentration of Cu2+/Bi3+, solvent and the growing time for the growth of microCuBi2O4 in CBD process were investigated. Under optimal conditions, microCuBi2O4 with length and diameter of ~1.2 and ~0.25 m, respectively, corresponding to an aspect ratio of 4.8 was obtained. Regarding the applicability of microCuBi2O4 in PEC hydrogen generation, microCuBi2O4 suffered photoinstability under N2 atmosphere, but exhibited high photocurrent response and photostability under O2 atmosphere, suggesting the PEC performance of microCuBi2O4 is highly dependent on the kinetics of PEC reactions on its surface. The photostability of microCuBi2O4 under N2 atmosphere was slightly improved by deposition a layer of nickel based hydrogen evolution catalyst onto its surface. Further optimization on the parameters in surface modification process on microCuBi2O4 is still required to improve its photostability and photo-activity.
1.Hahn, N. T.; Holmberg, V. C.; Korgel, B. A.; Mullins, C. B., Electrochemical Synthesis and Characterization of p-CuBi2O4 Thin Film Photocathodes. Journal of Physical Chemistry C 2012, 116 (10), 6459-6466.
2.Nakabayashi, Y.; Nishikawa, M.; Nosaka, Y., Fabrication of CuBi2O4 Photocathode through Novel Anodic Electrodeposition for Solar Hydrogen Production. Electrochimica Acta 2014, 125, 191-198.
3.Patil, R.; Kelkar, S.; Naphadeab, R.; Ogale, S., Low Temperature Grown CuBi2O4 with Flower Morphology and Its Composite with CuO Nanosheets for Photoelectrochemical Water Splitting. Journal of Materials Chemistry A 2014, 2 (10), 3661-3668.
4.Oh, W. D.; Dong, Z. L.; Lim, T. T., Hierarchically-Structured Co- CuBi2O4 and Cu- CuBi2O4 for Sulfanilamide Removal Via Peroxymonosulfate Activation. Catalysis Today 2017, 280, 2-7.
5.Henmi, C., Kusachiite, CuBi2O4, a New Mineral from Fuka, Okayama Prefecture, Japan. Mineralogical Magazine 1995, 59 (3), 545-548.
6.Berglund, S. P.; Lee, H. C.; Nunez, P. D.; Bard, A. J.; Mullins, C. B., Screening of Transition and Post-Transition Metals to Incorporate into Copper Oxide and Copper Bismuth Oxide for Photoelectrochemical Hydrogen Evolution. Physical Chemistry Chemical Physics 2013, 15 (13), 4554-4565.
7.Kang, D.; Hill, J. C.; Park, Y.; Choi, K. S., Photoelectrochemical Properties and Photostabilities of High Surface Area CuBi2O4 and Ag-Doped CuBi2O4 Photocathodes. Chemistry of Materials 2016, 28 (12), 4331-4340.
8.Hulanicki, A.; Glab, S.; Ingman, F., Chemical Sensors Definitions and Classification. Pure and Applied Chemistry 1991, 63 (9), 1247-1250.
9.Clark, L. C.; Lyons, C., Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Annals of the New York Academy of Sciences 1962, 102 (1), 29-&.
10.Wang, J., Electrochemical Glucose Biosensors. Chemical Reviews 2008, 108 (2), 814-825.
11.Park, S.; Boo, H.; Chung, T. D., Electrochemical Non-Enzymatic Glucose Sensors. Analytica Chimica Acta 2006, 556 (1), 46-57.
12.Sun, S. D.; Zhang, X. Z.; Sun, Y. X.; Zhang, J.; Yang, S. C.; Song, X. P.; Yang, Z. M., A Facile Strategy for the Synthesis of Hierarchical CuO Nanourchins and Their Application as Non-Enzymatic Glucose Sensors. RSC Advances 2013, 3 (33), 13712-13719.
13.Wilson, R.; Turner, A. P. F., Glucose-Oxidase - an Ideal Enzyme. Biosensors & Bioelectronics 1992, 7 (3), 165-185.
14.Hrapovic, S.; Liu, Y. L.; Male, K. B.; Luong, J. H. T., Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes. Analytical Chemistry 2004, 76 (4), 1083-1088.
15.Li, Y.; Song, Y. Y.; Yang, C.; Xia, X. H., Hydrogen Bubble Dynamic Template Synthesis of Porous Gold for Nonenzymatic Electrochemical Detection of Glucose. Electrochemistry Communications 2007, 9 (5), 981-988.
16.Meng, L.; Jin, J.; Yang, G. X.; Lu, T. H.; Zhang, H.; Cai, C. X., Nonenzymatic Electrochemical Detection of Glucose Based on Palladium-Single-Walled Carbon Nanotube Hybrid Nanostructures. Analytical Chemistry 2009, 81 (17), 7271-7280.
17.Wang, J.; Thomas, D. F.; Chen, A., Nonenzymatic Electrochemical Glucose Sensor Based on Nanoporous PtPb Networks. Analytical Chemistry 2008, 80 (4), 997-1004.
18.Xiao, F.; Zhao, F. Q.; Mei, D. P.; Mo, Z. R.; Zeng, B. Z., Nonenzymatic Glucose Sensor Based on Ultrasonic-Electrode Position of Bimetallic PtM (M = Ru, Pd and Au) Nanoparticles on Carbon Nanotubes-Ionic Liquid Composite Film. Biosensors & Bioelectronics 2009, 24 (12), 3481-3486.
19.Yuan, J. H.; Wang, K.; Xia, X. H., Highly Ordered Platinum-Nanotubule Arrays for Amperometric Glucose Sensing. Advanced Functional Materials 2005, 15 (5), 803-809.
20.Liu, Y.; Teng, H.; Hou, H. Q.; You, T. Y., Nonenzymatic Glucose Sensor Based on Renewable Electrospun Ni Nanoparticle-Loaded Carbon Nanofiber Paste Electrode. Biosensors & Bioelectronics 2009, 24 (11), 3329-3334.
21.Lu, L. M.; Zhang, L.; Qu, F. L.; Lu, H. X.; Zhang, X. B.; Wu, Z. S.; Huan, S. Y.; Wang, Q. A.; Shen, G. L.; Yu, R. Q., A Nano-Ni Based Ultrasensitive Nonenzymatic Electrochemical Sensor for Glucose: Enhancing Sensitivity through a Nanowire Array Strategy. Biosensors & Bioelectronics 2009, 25 (1), 218-223.
22.Lu, L. M.; Zhang, X. B.; Shen, G. L.; Yu, R. Q., Seed-Mediated Synthesis of Copper Nanoparticles on Carbon Nanotubes and Their Application in Nonenzymatic Glucose Biosensors. Analytica Chimica Acta 2012, 715, 99-104.
23.Nie, H. G.; Yao, Z.; Zhou, X. M.; Yang, Z.; Huang, S. M., Nonenzymatic Electrochemical Detection of Glucose Using Well-Distributed Nickel Nanoparticles on Straight Multi-Walled Carbon Nanotubes. Biosensors & Bioelectronics 2011, 30 (1), 28-34.
24.Niu, X. H.; Lan, M. B.; Zhao, H. L.; Chen, C., Highly Sensitive and Selective Nonenzymatic Detection of Glucose Using Three-Dimensional Porous Nickel Nanostructures. Analytical Chemistry 2013, 85 (7), 3561-3569.
25.Ai, H. H.; Huang, X. T.; Zhu, Z. H.; Liu, J. P.; Chi, Q. B.; Li, Y. Y.; Li, Z. K.; Ji, X. X., A Novel Glucose Sensor Based on Monodispersed Ni/Al Layered Double Hydroxide and Chitosan. Biosensors & Bioelectronics 2008, 24 (4), 1048-1052.
26.Ding, Y.; Wang, Y.; Su, L. A.; Bellagamba, M.; Zhang, H.; Lei, Y., Electrospun Co3O4 Nanofibers for Sensitive and Selective Glucose Detection. Biosensors & Bioelectronics 2010, 26 (2), 542-548.
27.Jiang, L. C.; Zhang, W. D., A Highly Sensitive Nonenzymatic Glucose Sensor Based on CuO Nanoparticles-Modified Carbon Nanotube Electrode. Biosensors & Bioelectronics 2010, 25 (6), 1402-1407.
28.Kung, C. W.; Lin, C. Y.; Lai, Y. H.; Vittal, R.; Ho, K. C., Cobalt Oxide Acicular Nanorods with High Sensitivity for the Non-Enzymatic Detection of Glucose. Biosensors & Bioelectronics 2011, 27 (1), 125-131.
29.Li, L. M.; Du, Z. F.; Liu, S. A.; Hao, Q. Y.; Wang, Y. G.; Li, Q. H.; Wang, T. H., A Novel Nonenzymatic Hydrogen Peroxide Sensor Based on MnO2/Graphene Oxide Nanocomposite. Talanta 2010, 82 (5), 1637-1641.
30.Nai, J. W.; Wang, S. Q.; Bai, Y.; Guo, L., Amorphous Ni(OH)2 Nanoboxes: Fast Fabrication and Enhanced Sensing for Glucose. Small 2013, 9 (18), 3147-3152.
31.Wang, G. M.; Lu, X. H.; Zhai, T.; Ling, Y. C.; Wang, H. Y.; Tong, Y. X.; Li, Y., Free-Standing Nickel Oxide Nanoflake Arrays: Synthesis and Application for Highly Sensitive Non-Enzymatic Glucose Sensors. Nanoscale 2012, 4 (10), 3123-3127.
32.Wang, X.; Hui, C. G.; Liu, H.; Du, G. J.; He, X. S.; Xi, Y., Synthesis of CuO Nanostructures and Their Application for Nonenzymatic Glucose Sensing. Sensors and Actuators B-Chemical 2010, 144 (1), 220-225.
33.Sun, Y. P.; Buck, H.; Mallouk, T. E., Combinatorial Discovery of Alloy Electrocatalysts for Amperometric Glucose Sensors. Analytical Chemistry 2001, 73 (7), 1599-1604.
34.Zhang, Y. C.; Su, L.; Manuzzi, D.; de los Monteros, H. V. E.; Jia, W. Z.; Huo, D. Q.; Hou, C. J.; Lei, Y., Ultrasensitive and Selective Non-Enzymatic Glucose Detection Using Copper Nanowires. Biosensors & Bioelectronics 2012, 31 (1), 426-432.
35.Casella, I. G.; Gatta, M.; Guascito, M. R.; Cataldi, T. R. I., Highly-Dispersed Copper Microparticles on the Active Gold Substrate as an Amperometric Sensor for Glucose. Analytica Chimica Acta 1997, 357 (1-2), 63-71.
36.Huang, T. K.; Lin, K. W.; Tung, S. P.; Cheng, T. M.; Chang, I. C.; Hsieh, Y. Z.; Lee, C. Y.; Chiu, H. T., Glucose Sensing by Electrochemically Grown Copper Nanobelt Electrode. Journal of Electroanalytical Chemistry 2009, 636 (1-2), 123-127.
37.Niu, X. H.; Li, Y. X.; Tang, J.; Hu, Y. L.; Zhao, H. L.; Lan, M. B., Electrochemical Sensing Interfaces with Tunable Porosity for Nonenzymatic Glucose Detection: A Cu Foam Case. Biosensors & Bioelectronics 2014, 51, 22-28.
38.Zhou, S. H.; Feng, X.; Shi, H. Y.; Chen, J.; Zhang, F.; Song, W. B., Direct Growth of Vertically Aligned Arrays of Cu(OH)2 Nanotubes for the Electrochemical Sensing of Glucose. Sensors and Actuators B-Chemical 2013, 177, 445-452.
39.Li, C. L.; Kurniawan, M.; Sun, D. L.; Tabata, H.; Delaunay, J. J., Nanoporous CuO Layer Modified Cu Electrode for High Performance Enzymatic and Non-Enzymatic Glucose Sensing. Nanotechnology 2015, 26 (1).
40.Cherevko, S.; Chung, C. H., The Porous CuO Electrode Fabricated by Hydrogen Bubble Evolution and Its Application to Highly Sensitive Non-Enzymatic Glucose Detection. Talanta 2010, 80 (3), 1371-1377.
41.Li, K.; Fan, G. L.; Yang, L.; Li, F., Novel Ultrasensitive Non-Enzymatic Glucose Sensors Based on Controlled Flower-Like CuO Hierarchical Films. Sensors and Actuators B-Chemical 2014, 199, 175-182.
42.Sun, S. D.; Sun, Y. X.; Chen, A. R.; Zhang, X. Z.; Yang, Z. M., Nanoporous Copper Oxide Ribbon Assembly of Free-Standing Nanoneedles as Biosensors for Glucose. Analyst 2015, 140 (15), 5205-5215.
43.Li, S.; Zheng, Y. J.; Qin, G. W. W.; Ren, Y. P.; Pei, W. L.; Zuo, L., Enzyme-Free Amperometric Sensing of Hydrogen Peroxide and Glucose at a Hierarchical Cu2O Modified Electrode. Talanta 2011, 85 (3), 1260-1264.
44.Li, X.; Wei, C. T.; Fu, J. Y.; Wang, L.; Chen, S. H.; Li, P.; Li, H. B.; Song, Y. H., Electrolyte-Controllable Synthesis of CuxO with Novel Morphology and Their Application in Glucose Sensors. RSC Advances 2014, 4 (94), 52067-52073.
45.Neetzel, C.; Muench, F.; Matsutani, T.; Jaud, J. C.; Broetz, J.; Ohgai, T.; Ensinger, W., Facile Wet-Chemical Synthesis of Differently Shaped Cuprous Oxide Particles and a Thin Film: Effect of Catalyst Morphology on the Glucose Sensing Performance. Sensors and Actuators B-Chemical 2015, 214, 189-196.
46.Zhao, Y. X.; Fan, L. L.; Zhang, Y.; Zhao, H.; Li, X. J.; Li, Y. P.; Wen, L.; Yan, Z. F.; Huo, Z. Y., Hyper-Branched Cu@Cu2O Coaxial Nanowires Mesh Electrode for Ultra-Sensitive Glucose Detection. ACS Applied Materials & Interfaces 2015, 7 (30), 16802-16812.
47.Marioli, J. M.; Kuwana, T., Electrochemical Characterization of Carbohydrate Oxidation at Copper Electrodes. Electrochimica Acta 1992, 37 (7), 1187-1197.
48.Suneesh, P. V.; Vargis, V. S.; Ramachandran, T.; Nair, B. G.; Babu, T. G. S., Co-Cu Alloy Nanoparticles Decorated TiO2 Nanotube Arrays for Highly Sensitive and Selective Nonenzymatic Sensing of Glucose. Sensors and Actuators B-Chemical 2015, 215, 337-344.
49.Liu, D. Y.; Luo, Q. M.; Zhou, F. Q., Nonenzymatic Glucose Sensor Based on Gold-Copper Alloy Nanoparticles on Defect Sites of Carbon Nanotubes by Spontaneous Reduction. Synthetic Metals 2010, 160 (15-16), 1745-1748.
50.Potzelberger, I.; Mardare, A. I.; Hassel, A. W., Electrocatalytic Oxidation of Glucose by Screening Combinatorial Copper-Nickel Alloys. Physica Status Solidi a-Applications and Materials Science 2016, 213 (6), 1434-1440.
51.Uzunoglu, A.; Scherbarth, A. D.; Stanciu, L. A., Bimetallic PdCu/SPCE Non-Enzymatic Hydrogen Peroxide Sensors. Sensors and Actuators B-Chemical 2015, 220, 968-976.
52.Wang, L.; Zheng, Y. L.; Lu, X. P.; Li, Z.; Sun, L. L.; Song, Y. H., Dendritic Copper-Cobalt Nanostructures/Reduced Graphene Oxide-Chitosan Modified Glassy Carbon Electrode for Glucose Sensing. Sensors and Actuators B-Chemical 2014, 195, 1-7.
53.Yuan, M.; Liu, A. P.; Zhao, M.; Dong, W. J.; Zhao, T. Y.; Wang, J. J.; Tang, W. H., Bimetallic PdCu Nanoparticle Decorated Three-Dimensional Graphene Hydrogel for Non-Enzymatic Amperometric Glucose Sensor. Sensors and Actuators B-Chemical 2014, 190, 707-714.
54.Alizadeh, T.; Mirzagholipur, S., A Nafion-Free Non-Enzymatic Amperometric Glucose Sensor Based on Copper Oxide Nanoparticles-Graphene Nanocomposite. Sensors and Actuators B-Chemical 2014, 198, 438-447.
55.Ensafi, A. A.; Abarghoui, M. M.; Rezaei, B., A New Non-Enzymatic Glucose Sensor Based on Copper/Porous Silicon Nanocomposite. Electrochimica Acta 2014, 123, 219-226.
56.Wang, Q.; Wang, Q.; Li, M. S.; Szunerits, S.; Boukherroub, R., Preparation of Reduced Graphene Oxide/Cu Nanoparticle Composites through Electrophoretic Deposition: Application for Nonenzymatic Glucose Sensing. RSC Advances 2015, 5 (21), 15861-15869.
57.Fan, Z. J.; Liu, B.; Liu, X. H.; Li, Z. P.; Wang, H. G.; Yang, S. R.; Wang, J. Q., A Flexible and Disposable Hybrid Electrode Based on Cu Nanowires Modified Graphene Transparent Electrode for Non-Enzymatic Glucose Sensor. Electrochimica Acta 2013, 109, 602-608.
58.Zhao, Y.; Bo, X. J.; Guo, L. P., Highly Exposed Copper Oxide Supported on Three-Dimensional Porous Reduced Graphene Oxide for Non-Enzymatic Detection of Glucose. Electrochimica Acta 2015, 176, 1272-1279.
59.Yang, Q.; Long, M.; Tan, L.; Zhang, Y.; Ouyang, J.; Liu, P.; Tang, A. D., Helical TiO2 Nanotube Arrays Modified by Cu-Cu2O with Ultrahigh Sensitivity for the Nonenzymatic Electro-Oxidation of Glucose. ACS Applied Materials & Interfaces 2015, 7 (23), 12719-12730.
60.Long, M.; Tan, L.; Liu, H. T.; He, Z.; Tang, A. D., Novel Helical TiO2 Nanotube Arrays Modified by Cu2O for Enzyme-Free Glucose Oxidation. Biosensors & Bioelectronics 2014, 59, 243-250.
61.Nia, P. M.; Meng, W. P.; Lorestani, F.; Mahmoudian, M. R.; Alias, Y., Electrodeposition of Copper Oxide/Polypyrrole/Reduced Graphene Oxide as a Nonenzymatic Glucose Biosensor. Sensors and Actuators B-Chemical 2015, 209, 100-108.
62.SoYoon, S.; Ramadoss, A.; Saravanakumar, B.; Kim, S. J., Novel Cu/CuO/ZnO Hybrid Hierarchical Nanostructures for Non-Enzymatic Glucose Sensor Application. Journal of Electroanalytical Chemistry 2014, 717, 90-95.
63.Xiao, X. X.; Wang, M.; Li, H.; Pan, Y. C.; Si, P. C., Non-Enzymatic Glucose Sensors Based on Controllable Nanoporous Gold/Copper Oxide Nanohybrids. Talanta 2014, 125, 366-371.
64.Dong, C. Q.; Zhong, H.; Kou, T. Y.; Frenzel, J.; Eggeler, G.; Zhang, Z. H., Three-Dimensional Cu Foam-Supported Single Crystalline Mesoporous Cu2O Nanothorn Arrays for Ultra-Highly Sensitive and Efficient Nonenzymatic Detection of Glucose. ACS Applied Materials & Interfaces 2015, 7 (36), 20215-20223.
65.Jiang, F.; Wang, S.; Lin, J. J.; Jin, H. L.; Zhang, L. J.; Huang, S. M.; Wang, J. C., Aligned Swcnt-Copper Oxide Array as a Nonenzymatic Electrochemical Probe of Glucose. Electrochemistry Communications 2011, 13 (4), 363-365.
66.Lu, W. D.; Sun, Y. J.; Dai, H. C.; Ni, P. J.; Jiang, S.; Wang, Y. L.; Li, Z.; Li, Z., Direct Growth of Pod-Like Cu2O Nanowire Arrays on Copper Foam: Highly Sensitive and Efficient Nonenzymatic Glucose and H2O2 Biosensor. Sensors and Actuators B-Chemical 2016, 231, 860-866.
67.Hui, N.; Wang, W. T.; Xua, G. Y.; Luo, X. L., Graphene Oxide Doped Poly(3,4-Ethylenedioxythiophene) Modified with Copper Nanoparticles for High Performance Nonenzymatic Sensing of Glucose. Journal of Materials Chemistry B 2015, 3 (4), 556-561.
68.Verbruggen, S. W., TiO2 Photocatalysis for the Degradation of Pollutants in Gas Phase: From Morphological Design to Plasmonic Enhancement. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 24, 64-82.
69.Zhu, L.; Basnet, P.; Larson, S. R.; Jones, L. P.; Howe, J. Y.; Tripp, R. A.; Zhao, Y., Visible Light-Induced Photoeletrochemical and Antimicrobial Properties of Hierarchical CuBi2O4 by Facile Hydrothermal Synthesis. Chemistryselect 2016, 1 (8), 1518-1524.
70.Oh, W. D.; Lua, S. K.; Dong, Z. L.; Lim, T. T., Rational Design of Hierarchically-Structured CuBi2O4 Composites by Deliberate Manipulation of the Nucleation and Growth Kinetics of CuBi2O4 for Environmental Applications. Nanoscale 2016, 8 (4), 2046-2054.
71.Oh, W. D.; Lua, S. K.; Dong, Z. L.; Lim, T. T., A Novel Three-Dimensional Spherical CuBi2O4 Consisting of Nanocolumn Arrays with Persulfate and Peroxymonosulfate Activation Functionalities for 1H-Benzotriazole Removal. Nanoscale 2015, 7 (17), 8149-8158.
72.Xie, Y. H.; Zhang, Y.; Yang, G. H.; Liu, C. H.; Wang, J. D., Hydrothermal Synthesis of CuBi2O4 Nanosheets and Their Photocatalytic Behavior under Visible Light Irradiation. Materials Letters 2013, 107, 291-294.
73.Bensaid, S.; Centi, G.; Garrone, E.; Perathoner, S.; Saracco, G., Towards Artificial Leaves for Solar Hydrogen and Fuels from Carbon Dioxide. Chemsuschem 2012, 5 (3), 500-521.
74.Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37-38.
75.Lin, C.-Y.; Lai, Y.-H.; Mersch, D.; Reisner, E., Cu2O|NiOx Nanocomposite as an Inexpensive Photocathode in Photoelectrochemical Water Splitting. Chemical Science 2012, 3 (12), 3482.
76.Paracchino, A.; Laporte, V.; Sivula, K.; Graetzel, M.; Thimsen, E., Highly Active Oxide Photocathode for Photoelectrochemical Water Reduction. Nature Material 2011, 10 (6), 456-461.
77.van Dorp, D. H.; Hijnen, N.; Di Vece, M.; Kelly, J. J., SiC: A Photocathode for Water Splitting and Hydrogen Storage. Angewandte Chemie International Edition 2009, 48 (33), 6085-6088.
78.Akikusa, J.; Khan, S. U. M., Photoelectrolysis of Water to Hydrogen in p-SiC/Pt and p-SiC/n-TiO2 Cells. International Journal of Hydrogen Energy 2002, 27 (9), 863-870.
79.Ida, S.; Yamada, K.; Matsuka, M.; Hagiwara, H.; Ishihara, T., Photoelectrochemical Hydrogen Production from Water Using p-Type and n-Type Oxide Semiconductor Electrodes. Electrochimica Acta 2012, 82, 397-401.
80.Cao, J.; Kako, T.; Li, P.; Ouyang, S.; Ye, J., Fabrication of p-Type CaFe2O4 Nanofilms for Photoelectrochemical Hydrogen Generation. Electrochemistry Communications 2011, 13 (3), 275-278.
81.McDonald, K. J.; Choi, K. S., A New Electrochemical Synthesis Route for a BiOI Electrode and Its Conversion to a Highly Efficient Porous BiVO4 Photoanode for Solar Water Oxidation. Energy & Environmental Science 2012, 5 (9), 8553-8557.
82.Cesar, I.; Kay, A.; Martinez, J. A. G.; Grätzel, M., Translucent Thin Film Fe2O3 Photoanodes for Efficient Water Splitting by Sunlight: Nanostructure-Directing Effect of Si-Doping. Journal of American Chemical Society 2006, 128 (14), 4582-4583.
83.Wilson, J. F., Type 2 Diabetes. Ann Intern Med. 2007, 146 (1), ITC 1-15.
84.Allen J. Bard, L. R. F., Electrochemical Methods: Fundamentals and Applications. 2 ed.; John Wiley & Sons, Inc.: New York, 2001.
85.Elhaleem, S. M. A.; Ateya, B. G., Cyclic Voltammetry of Copper in Sodium-Hydroxide Solutions. Journal of Electroanalytical Chemistry 1981, 117 (2), 309-319.
86.Zhang, Y. W.; Zhou, E. C.; Li, Y. J.; He, X. W., A Novel Nonenzymatic Glucose Sensor Based on Magnetic Copper Ferrite Immobilized on Multiwalled Carbon Nanotubes. Analytical Methods 2015, 7 (6), 2360-2366.
87.Heller, A.; Feldman, B., Electrochemical Glucose Sensors and Their Applications in Diabetes Management. Chemical Reviews 2008, 108 (7), 2482-2505.
88.Khudaish, E. A.; Al Birikei, M. R., The Role of Bromine Adlayer at Palladium Electrode in the Electrochemical Oxidation of Dopamine in Alkaline Solution. Journal of Electroanalytical Chemistry 2010, 650 (1), 68-74.
89.Khudaish, E. A.; Al Farsi, A. A., Electrochemical Oxidation of Dopamine and Ascorbic Acid at a Palladium Electrode Modified with in situ Fabricated Iodine-Adlayer in Alkaline Solution. Talanta 2010, 80 (5), 1919-1925.
90.Luo, S. L.; Su, F.; Liu, C. B.; Li, J. X.; Liu, R. H.; Xiao, Y.; Li, Y.; Liu, X. N.; Cai, Q. Y., A New Method for Fabricating a CuO/TiO2 Nanotube Arrays Electrode and Its Application as a Sensitive Nonenzymatic Glucose Sensor. Talanta 2011, 86, 157-163.
91.Hrapovic, S.; Luong, J. H. T., Picoamperometric Detection of Glucose at Ultrasmall Platinum-Based Biosensors: Preparation and Characterization. Analytical Chemistry 2003, 75 (14), 3308-3315.
92.Lu, X. P.; Ye, Y. J.; Xie, Y. Z.; Song, Y. H.; Chen, S. H.; Li, P.; Chen, L. L.; Wang, L., Copper Coralloid Granule/Polyaniline/Reduced Graphene Oxide Nanocomposites for Nonenzymatic Glucose Detection. Analytical Methods 2014, 6 (13), 4643-4651.
93.Zhang, Y. C.; Yang, H.; Wang, W. P.; Zhang, H. M.; Li, R. S.; Wang, X. X.; Yu, R. C.,A Promising Supercapacitor Electrode Material of CuBi2O4 Hierarchical Microspheres Synthesized via a Coprecipitation Route. Journal of Alloys and Compounds 2016, 684, 707-713.
94.Wang, W.; Li, R.; Hua, X.; Zhang, R., Methanol Electrooxidation on Glassy Carbon Electrode Modified with Bimetallic Ni(II)Co(II)salen Complexes Encapsulated in Mesoporous Zeolite A. Electrochimica Acta 2015, 163, 48-56.
校內:2022-08-01公開