簡易檢索 / 詳目顯示

研究生: 陳玉凡
Chen, Yu-Fan
論文名稱: 聚對苯二甲酸辛二酯及聚對苯二甲酸壬二酯薄膜及三度空間的環帶球晶鑑定
Characterization of Ring-banded Spherulites in Poly(octamethylene terephthalate) and Poly(nonamethylene terephthalate) in Thin-film versus Three-Dimensional Growth
指導教授: 吳逸謨
Woo, E. M.
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 98
語文別: 英文
論文頁數: 83
中文關鍵詞: 聚對苯二甲酸辛二酯聚對苯二甲酸壬二酯環帶球晶三度空間結晶
外文關鍵詞: poly(octamethylene terephthalate), poly(nonamethylene terephthalate), ring-band, bulk, three dimensional structure
相關次數: 點閱:142下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚對苯二甲酸辛二酯[poly(octamethylene terephthalate), POT]及聚對苯二甲酸壬二酯[poly(nonamethylene terephthalate), PNT]的薄膜結晶或三度空間的結晶以偏光顯微鏡、微分掃描卡度計、掃描式電子顯微鏡及穿透式電子顯微鏡作觀察和分析。POT可以同時呈現兩種結晶型態,分別是有雙層環帶(double ring-banded)的球晶和沒有環帶(ringless)的球晶,其分佈依結晶溫度(Tc)或熔融溫度(Tmax)而不同。當使用160oC為熔融溫度的情況下,兩種結晶的比例會隨結晶溫度改變:在較低的結晶溫度,POT沒有環帶的球晶比例比較多;而在較高的結晶溫度下,POT則呈現全部是環狀光環的球晶。而在同一且較低的結晶溫度下,熔融溫度的提高會使沒有環帶球晶的比例減少,顯示高的熔融溫度可以把沒有環帶球晶的晶核全部熔掉。
    PNT則有三種結晶,分別稱為類型0、類型1及類型2球晶;其中只有兩種球晶會出現在同一結晶溫度。在較低結晶溫度(低於55oC)下,沒有環帶球晶的類型0,和雙層環帶球晶的類型2共存。而當結晶溫度高於55oC,佔多數的單層環帶(single ring-banded)類型1球晶和佔少數的類型2球晶共存。在掃描式電子顯微鏡的觀察下,相較於類型1球晶,類型2球晶環帶間距明顯較寬,其排列比較像是許多的短棒圍成的環狀同心圓結構,且其環狀結構也較類型1整齊。
    除了薄膜結晶的分析外,PNT三度空間的結晶也首次在本研究中探討。環狀結構不只在塊狀結晶的表面中被發現,其內部剖面也有類似的結構。經由掃描式電子顯微鏡和穿透式電子顯微鏡的分析,塊狀結晶內部的切片呈現在薄膜狀態的環狀結構相似。在塊狀結晶中,PNT類型1球晶和在薄膜的情況一樣佔多數,而類型2球晶則佔少數。在選定的幾個結晶溫度下做塊狀結晶的內部分析,推測PNT結晶在立體狀態下,是層狀成長而變成多層次的環狀立體結構。
    通常PNT類型2球晶很難被發現,該數量非常稀少。然而若將塊狀PNT在壓錠後的溴化鉀片上結晶,則可以得到類型2球晶佔整塊結晶幾乎是一半的比例,該結晶會出現在與溴化鉀片的接觸面(底面),而在整個塊狀結晶的表面(接觸空氣的那面)則清一色為類型1球晶。由表面或底面連接內部剖面的圖來看,PNT環狀結構的結晶應為非結晶層與結晶層交替形成。從薄膜到三度空間的結果,PNT的環狀結構形成機制可略知ㄧ二。

    Spherulite morphology of poly(octamethylene terephthalate) (POT) and poly(nonamethylene terephthalate) (PNT) in thin-film or three dimensional forms, were characterized using polarized versus non-polarized optical microscopy, scanning electron microscopy (SEM), wide-angle X-ray (WAXD) analysis, and transmission electron microscopy (TEM). POT can simultaneously display solely one type of spherulite or dual types of spherulites (double-ring-banded and ringless ones), depending on Tc or Tmax imposed. Fractions of these two types depend on Tc when quenched from a fixed Tmax = 160oC. At lower Tc’s, POT exhibits higher crystallization rates leading to higher fractions of ringless spherulites; at higher Tc’s, POT exhibits lower crystallization rates leading to ring-banded spherulites.
    Three types of spherulites (labeled: Type-0, 1, and 2) are possible in PNT when crystallized at wide range of crystallization temperature (Tc); however, only two of the three types can coexist in PNT at a given Tc. At lower Tc (lower than 55oC), the spherulites in PNT are either of Type-0 (appearing ringless in POM) or Type-2 (double-band in POM). When crystallized at 55oC or higher, the morphology is featured with Type-1 (single-ring-banded in POM) spherulites as the majority species that co-exist with Type-2 spherulites as imbedded minority. By comparison, the rod-like lamellae in the double-banded spherulites (Type-2) are longer and thicker, and more ordered than those in the single-banded spherulites (Type-1).
    Morphology of crystallized spherulites in PNT in bulk forms, instead of thin-film forms, was investigated. Ring textures were found to exist on the fractured surfaces or microtomed films from bulk PNT samples. By further SEM and TEM examinations, the fracture surfaces and microtomed films from the interior of the bulk display similar ring-banded patterns as those in thin films cast on glass slides. Although the cast PNT thin films in two-dimensional growth are known to display both Type-1 ring bands as majority and Type-2 ring bands as minority, this study further shows that the interior of PNT bulk exhibits mainly Type-1 (single rings with narrower spacing than Type-2) ring bands, and Type-2 spherulites exist sporadically in three-dimensional forms. From these analyses on the ring bands in the interiors of bulk-form PNT crystallized at several specific temperatures, it can be proposed that the growth of spherulites in three dimensions is layer-by-layer, packing into a multi-shells structure in three-dimensional ring-banded spheres. The rarely seen Type-2 spherulites are observed to be increased in population when crystallized on KBr substrates. From the relationship of the top or bottom surface and the fractured surface of bulk PNT taken off from KBr substrate it shows that the ring-band patterns exhibited on the top or bottom surface are actually the multi-shell construction with crystalline and non-crystalline layers alternating in spherulite of the bulk.

    ABSTRACT (Chinese and English) I ACKNOWLEDGEMENT V CONTENTS VI LIST OF FIGURES VIII SIGNS XII PREFACE XIII CHAPTER 1 INTRODUCTION 1.1 General Considerations 1 1.2 Structure of Crystalline Polymer 2 1.3 Lamellae 7 1.4 Ring-banded spherulites in polymers 9 1.5 Series of Polyesters 15 1.6 Multi-types of Spherulites in Polymers 16 1.7 Addition of Heterogeneous Materials in Polymers 18 1.8 Crystal in 3-D structure 19 CHAPTER 2 EXPERIMENT 2.1 Materials 21 2.2 Procedure and Apparatus 23 CHAPTER 3 RESULT AND DISCUSSION 3.1 Morphology of Poly(octamethylene terephthalate) Confined in Thin-Film Growth 26 3.2 Single- and Double-Ring Spherulites in Poly(nonamethylene terephthalate) 35 3.3 Annular Multi-Shelled Spherulites in Interiors of Bulk-Form Poly(nonamethylene terephthalate) 47 3.4 Three Dimensional Ring-Banded Spherulites in Poly(nonamethylene terephthalate) on Potassium Bromide Substrate 55 CHAPTER 4 CONCLUSION 67 REFERENCE 71 APPENDIX I BASIC PROPERTY 76 APPENDIX II PUBLISHED PAPERS 80 APPENDIX III VITA 82

    [1] Bassett DC, Olley RH, Al Raheil IAM, Polymer 29, 1539 (1988).
    [2] Bassett DC, Frank FC, Keller A, Philos Trans Royal Soc London A 348, 29 (1994).
    [3] Sasaki S, Sasaki Y, Takahara A, Kajiyama T, Polymer 43, 3441 (2002).
    [4] Jiang Y, Zhou JJ, Li L, Xu J, Guo BH, Zhang ZM, Wu Q, Chen GQ, Weng LT, Cheung ZL, Chan CM, Langmuir 19, 7417 (2003).
    [5] Xu J, Guo BH, Zhang ZM, Zhou JJ, Jiang Y, Yan S, Li L, Wu Q, Chen GQ, Schultz JM, Macromolecules 37, 4118 (2004).
    [6] Toda A, Okamura M, Taguchi K, Hikosaka M, Kajioka H, Macromolecules 41, 2484 (2008).
    [7] Lotz B, Cheng SZD, Polymer 46, 577 (2005).
    [8] Sperling LH, “Introduction to Physical Polymer Science,” John Wiley & Sons,Inc., New Jersey, Chap 6 (2006).
    [9] Sisson WA, in “Cellulose and Cellulose Derivatives,” Interscience, New York, p 203-205 (1943).
    [10] Hobbs JK, Binger DR, Keller A, Barham PJ, J Polym Sci Part B: Polym Phys 38, 1575 (2000).
    [11] Hearle JWS, Peters RH, “Fiber Structure,” Textile Institute, Manchester, England, 1963.
    [12] Statton WO, J Polym Sci Part C: Polym Symp 20, 117 (1967).
    [13] Herrmann K, Gernggross O, Kautschuk 8, 181 (1932).
    [14] Keller A, Philos Mag 2, 1171 (1957).
    [15] Frischer EW, Z Naturforsch 12a, 753 (1957).
    [16] Till PH, Jr, J Polym Sci 24, 301 (1957).
    [17] Hoffman JD, Davis GT, Lauritzen JI, Jr, in Treatise on Solid State Chemistry, Vol 3,Crystalline and Noncrystalline Solids, N. B. Hannay, ed., Plenum, New York, 1976, Chap 7.
    [18] Bovey FA, Org Coat Appl Polym Sci Prepr 48, 76 (1983).
    [19] Schilling FC, Bovey FA, Tseng S, Woodward AE, Macromolecules 16, 808 (1983).
    [20] Oyama T, Shiokawa K, Murata Y, Polym J 6, 549 (1974).
    [21] Geil PH, “Polymer Single Crystals,” Interscience, New York, (1963).
    [22] Kovacs AJ, Manson JA, Levy D, Kolloid Z 214, 1 (1966).
    [23] Flory PJ, J Am Chem Soc 84, 2857 (1962).
    [24] Geil PH, “Polymer single crystals” Robert E Krieger Publishing Co., New York, (1973).
    [25] Colson JP, Reneker DH, J Appl Phys 44, 4293 (1973).
    [26] Yasuniwa M, Tsubakihara S, Iura K, Ono Y, Dan Y, Takahashi K, Polymer 47, 7554 (2006).
    [27] Okabe Y, Kyu T, Saito H, Inoue T, Macromolecules 31, 5823 (1998).
    [28] Hengstenberg J, Mark H, Z Kristallogr 69, 271 (1928).
    [29] Hoffman JD, Miller RL, Macromolecules 21, 3038 (1988).
    [30] Beekmans LGM, Hempenius MA, Vancso GJ, Eur Polym J 40, 893 (2004).
    [31] Chuang WT, Hong PD, Chuah HH, Polymer 45, 2413 (2004).
    [32] Singfield KL, Hobbs JK, Keller A, J Cryst Growth 183, 683 (1998).
    [33] Wang Y, Chan CM, Li L, Ng KM, Langmuir 22, 7384 (2006).
    [34] Wang Z, An L, Jiang B, Wangh X, Macromol Rapid Commun 19, 131 (1998).
    [35] Chao CC, Chen CK, Chiang YW, Ho RM, Macromolecules 41, 3949 (2008).
    [36] Keith HD, Padden FJ, Jr, Macromolecules 29, 7776 (1996).
    [37] Keith HD, Padden FJ, Jr, Polymer 25, 28 (1984).
    [38] Saracovan I, Keith HD, Manley RSJ, Brown GR, Macromolecules 32, 8918 (1999).
    [39] Keith HD, Polymer 42, 9987 (2001).
    [40] Maillar D, Prud’homme RE, Macromolecules 39, 4272 (2006).
    [41] Maillard D, Prud’homme RE, Macromolecules 41, 1705 (2008).
    [42] Duan Y, Jiang Y, Jiang S, Li L, Yan S, Macromolecules 37, 9283 (2004).
    [43] Duan Y, Zhang Y, Yan S, Schultz JM, Polymer 46, 9015 (2005).
    [44] Wang Z, Hu Z, Chen Y, Gong Y, Huang H, He T, Macromolecules 40, 4381 (2007).
    [45] Wang Z, Alfonso GC, Hu Z, Zhang J, He T, Macromolecules 41, 7584 (2008).
    [46] Frömsdorf A, Woo EM, Lee LT, Chen YF, and Förster S, Macromol Rapid Commun 29, 1322 (2008).
    [47] Chen J, Yang D, Macromolecules 38, 3371 (2005).
    [48] Cheung ZL, Weng LT, Chan CM, Hou WM, Li L, Langmuir 21, 7968 (2005).
    [49] Yun JH, Kuboyama K, Chiba T, Ougizama T, Polymer 47, 4831 (2006).
    [50] Woo EM, Wu PL, Colloid Polym Sci 284, 357 (2006).
    [51] Wu PL, Woo EM, J Polym Sci Part B: Polym Phys 41, 80 (2003).
    [52] Wu PL, Woo EM, Liu HL, J Polym Sci Part B: Polym Phys 42, 4421 (2004).
    [53] Cagiao ME, Calleja FJ Balta, Vanderdonckt C, Zachmann HG. Polymer 34, 2024 (1993).
    [54] Groeninckx G, Reynaers H, Berghmans H, Smets G, J Polym Sci : Polym Phys Ed 18, 1311 (1980).
    [55] Fu Y, Busing WR, Jin Y, Affholter KA, Wunderlich B, Macromolecules 26, 2187 (1993).
    [56] Lovinger AJ, Macromolecules 14, 322 (1981).
    [57] Di Lorenzo ML, Righetti MC, Polym Bull 53, 53 (2004).
    [58] Di Lorenzo ML, Righetti MC, Polym Eng Sci 43, 1889 (2003).
    [59] Stein RS, Misra A. J Polym Sci Polym Phys Ed 18, 327 (1980).
    [60] Woo EM, Wu PL, Chiang CP, Liu HL, Macromol Rapid Commun 25, 942 (2004).
    [61] Hall IH, Ibrahim BA, Polymer 23, 805 (1982).
    [62] Hall IH, Pass MG, Rammo NN, J Polym Sci Polym Phys Ed 16, 1409 (1978).
    [63] Hall IH, Rammo NN, J Polym Sci: Polym Phys Ed 16, 2189 (1978).
    [64] Ghosh AK, Woo EM, Sun YS, Lee LT, Wu MC, Macromolecules 38, 4780 (2005).
    [65] Holland VF, Miller RL, J Appl Phys 35, 3241 (1964).
    [66] Luciani L, Seppala J, Lofgren B, Prog Polym Sci 13, 37 (1988).
    [67] Loz B, Thierry A, Macromolecules 36, 286 (2003).
    [68] Mareau VH, Prud’homme RE, Macromolecules 35, 5338 (2002).
    [69] Mareau VH, Prud’homme RE, Macromolecules 36, 675 (2003).
    [70] Chen YF, Woo EM, and Li SH, Langmuir 24, 11880 (2008).
    [71] Woo EM, Chen YF, Polymer 50, 4706 (2009).
    [72] Chen YF, Woo EM, Macromol Rapid Commun 2009, in press.
    [73] Miyazaki T, TakedaY, Akasaka M, Sakai M, Hoshiko A, Macromolecules 41, 2749 (2008).
    [74] Lovinger AJ, J Appl Phys 52, 5934 (1981).
    [75] Yoshioka T, Fujimura T, Manabe N, Yokota Y, Tsuji M, Polymer 48, 5780 (2007).
    [76] Lovinger AJ, Polymer 22, 412 (1981).
    [77] Alcazar D, Ruan J, Thierry A, Lotz B. Macromolecules 39, 2832 (2006).
    [78] Kurimoto R, Kawaguchi A. J Polym Sci Polym Phys 40, 2421 (2002).
    [79] Fujita M, Tsuji M, Kohjiya S. Polymer 40, 2829 (1999).
    [80] Fujita M, Tsuji M, Kohjiya S. Macromolecules 34, 7724 (2001).
    [81] Mitra D, Misra A. J Appl Polym Sci 36, 387 (1988).
    [82] Fanegas N, Gomez MA, Macro C, Jimenez I, Ellis G. Polymer 48, 5324 (2007).
    [83] Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E. J Appl Polym Sci 103, 244 (2007).
    [84] Alata H, Hexig B, Inoue Y. J Polym Sci Part B: Polym Phys 44, 1813 (2006).
    [85] Hou WM, Liu G, Zhou JJ, Gao X, Li Y, Li L, Zheng S, Xin Z, Zhao LQ. Colloid Polym Sci 285, 11 (2006).
    [86] Bai H, Wang Y, Song B, Huang T, Han L. J Polym Sci Part B: Polym Phys 47, 46 (2009).
    [87] Kai W, He Y, Inoue Y, Polym Int 54, 780 (2005).
    [88] Zhang J, J Appl Polym Sci 93, 590 (2004).
    [89] Bian J, Ye SR, Feng LX, J Polym Sci Part B: Polym Phys 41, 2135 (2003).
    [90] Gao X, Liu R, Jin M, Bu H, J Polym Sci Part B: Polym Phys 40, 2387 (2002).
    [91] Xiao W, Wu P, Feng J, Yao R, J Appl Polym Sci 111, 1076 (2009).
    [92] Kai W, Zhu B, He Y, Inoue Y, J Polym Sci Part B: Polym Phys 43, 2340 (2005).
    [93] Patro TU, Mhalgi MV, Khakhar DV, Misra A, Polymer 49, 3486 (2008).
    [94] Chen YF, “Correlations between growth regimes and unusual spherulite morphology in aliphatic versus aryl polyesters” Master Thesis, Chemical Engineering Department, National Cheng Kung University, Tainan, Taiwan (2007).

    下載圖示 校內:2011-01-06公開
    校外:2011-01-06公開
    QR CODE