簡易檢索 / 詳目顯示

研究生: 詹承偉
Chan, Cheng-wei
論文名稱: Sn-3.0Ag-0.5Cu-xNi無鉛銲錫合金拉伸及振動破壞特性之研究
The Tension and Vibration Fracture Characteristics of Sn-3.0Ag-0.5Cu-xNi Lead-Free Solders
指導教授: 呂傳盛
Lui, Truan-Sheng
陳立輝
Chen, Li-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 64
中文關鍵詞: 振動無鉛銲錫
外文關鍵詞: Sn-3.0Ag-0.5Cu
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銲錫材料使用時可能會受外力影響而產生破壞,因此銲錫材料的機械性質有其探討的必要性。本實驗主要探討不同Ni添加量對Sn-3.0Ag-0.5Cu-xNi銲錫材料之拉伸以及振動破壞特性之影響。
    Sn-3.0Ag-0.5Cu之微觀組織為初晶Sn相與Sn-Ag-Cu共晶區。添加Ni之後的微觀組織,則會另出現(Cu,Ni)xSny金屬間化合物。經由EPMA分析Sn-3.0Ag-0.5Cu-0.3Ni之元素分布情形,發現Ag原子及Cu原子存在於共晶區;Ni原子會與Cu原子及Sn原子形成(Cu,Ni)xSny金屬間化合物。透過EPMA之EDS分析,長條狀金屬間化合物之化學式為(Cu,Ni)3Sn4,顆粒狀金屬間化合物之化學組成為(Cu,Ni)6Sn5。
    於相同初始拉伸應變速率之結果顯示,Ni添加量增加會使得UTS及YS下降,TE皆能達到40%的應變量,而UE約7~10%的應變量。於不同初始拉伸應變速率之結果顯示,UTS及YS會隨著應變速率增加而上升,且添加Ni之銲錫合金會有較大的應變速率敏感度。
    由等出力值1.8G之振動試驗中,可知各組材料之制振性,其中以Sn-3.0Ag-0.5Cu-0.1Ni有較佳的制振性。各組材料之共振壽命由高至低依序為:Sn-3.0Ag-0.5Cu-0.1Ni > Sn-3.0Ag-0.5Cu-0.02Ni ≒ Sn-3.0Ag-
    0.5Cu。於相同初始偏移量之共振壽命,可知各組材料之裂縫傳播阻抗能力的優劣,依序為:Sn-3.0Ag-0.5Cu-0.1Ni ≒ Sn-3.0Ag-0.5Cu > Sn-3.0Ag-0.5Cu-0.02Ni,且振動破壞裂縫沿著初晶Sn相的層狀變形傳播,因此振動變形機制由初晶Sn相的層狀變形所主導。

    The solder may be damaged by external force. So it is worthwhile to know the mechanical properties of the solder during alloy design. The aim of this study is to explore the tensile and vibration properties of the solder with changing of Ni adding to Sn-3.0Ag-0.5Cu.
    The microstructure of Sn-3.0Ag-0.5Cu solder alloy is composed of the primary phase β-Sn and the eutectic phase of Sn-Ag-Cu. We could observe (Cu,Ni)xSny intermetallic compouds in the microstructure of Sn-3.0Ag-0.5Cu-xNi with Ni addition. From the analyzing of EPMA, we can analyze Sn-3.0Ag-0.5Cu-0.3Ni to know how every element(s) distribute in the matrix. After analyzing, we could find that Ag and Cu exist in the eutectic area, and Ni would form the (Cu,Ni)xSny intermetallic compounds with Cu and Sn elements. From the analyzing of EDS, one of the intermetallic compound’s chemical composition was (Cu,Ni)3Sn4, and the other was (Cu,Ni)6Sn5.
    The results from the tensile tests performed under the condition of constant strain rate showed that the more addition of Ni, the lower UTS and YS would be. The TE reaches about 40%, and UE is about 7~10%. The results from the other ones performed under different strain rate show that the UTS and YS would increase when rising strain rate of the tensile tests, and the specimens which Ni addition to had larger strain rate sensitivity.
    The results of the vibration tests performed under the condition of constant force indicated that the damping capacity of Sn-3.0Ag-0.5Cu-0.1Ni was the best, and the vibration life of specimens in descending order was: Sn-3.0Ag-0.5Cu-0.1Ni > Sn-3.0Ag-0.5Cu-0.02Ni ≒ Sn-3.0Ag-0.5Cu. From the vibration tests performed under the condition of constant deflection, we could know the vibration resistance of the solder alloy. According to the results, the resistance of Sn-3.0Ag-0.5Cu-0.1Ni and Sn-3.0Ag-0.5Cu was better than that of Sn-3.0Ag-0.5Cu-0.02Ni, and the vibration crack propagates along the layer-like deformation of primary β-Sn. Therefore, in the Sn-3.0Ag-0.5Cu-xNi alloys, the vibration deformation mechanism is dominated by the layer-like deformation.

    中文摘要.........................................................................................................Ⅰ 英文摘要.........................................................................................................Ⅱ 致謝.................................................................................................................Ⅳ 總目錄.............................................................................................................Ⅴ 表目錄.............................................................................................................Ⅶ 圖目錄.............................................................................................................Ⅷ 第一章 前言.....................................................................................................1 第二章 文獻回顧.............................................................................................2 2-1 軟銲技術與無鉛銲錫的發展......................................................2 2-2 Sn-Ag-Cu銲錫合金的性質..........................................................2 2-3 振動性質......................................................................................3 2-3-1 共振頻率.............................................................................3 2-3-2 阻尼與制振性.....................................................................4 2-3-3 D-N曲線與共振壽命.........................................................5 2-3-4 振動破壞性質.....................................................................6 第三章 實驗方法...........................................................................................11 3-1 研究架構....................................................................................11 3-2 合金配製、澆鑄..........................................................................11 3-3 金相觀察及解析........................................................................11 3-4 拉伸破斷試驗............................................................................11 3-4-1 試片製備...........................................................................11 3-4-2 相同應變速率之拉伸破斷試驗.......................................12 3-4-3 不同應變速率之拉伸破斷試驗.......................................12 3-5 振動破壞試驗............................................................................12 3-5-1 試片規格及振動設備.......................................................12 3-5-2 共振頻率...........................................................................13 3-5-3 振動疲勞測試...................................................................13 第四章 實驗結果...........................................................................................20 4-1 微觀組織....................................................................................20 4-1-1 OM....................................................................................20 4-1-2 EPMA................................................................................20 4-2 相同應變速率之拉伸破斷試驗................................................21 4-2-1 拉伸機械性質...................................................................21 4-2-2 次表面及破斷面微觀組織...............................................21 4-2-3 加工硬化率.......................................................................21 4-3 不同應變速率之拉伸破斷試驗................................................22 4-3-1 拉伸機械性質...................................................................22 4-3-2 次表面微觀組織...............................................................22 4-3-3 應變速率敏感指數...........................................................22 4-4 振動破壞試驗............................................................................22 4-4-1 振動破壞次表面微觀組織...............................................22 4-4-2 D-N曲線...........................................................................23 4-4-3 共振壽命...........................................................................23 第五章 討論...................................................................................................50 5-1 Ni添加量與微觀組織關係........................................................50 5-2 Ni添加量對拉伸阻抗之效應....................................................50 5-2-1 相同應變速率下之拉伸性質...........................................50 5-2-2 不同應變速率下之拉伸性質...........................................51 5-3 Ni添加量對振動破壞之效應...................................................52 5-3-1 制振性及共振壽命...........................................................52 5-3-2 縫傳播阻抗...................................................................52 第六章 結論...................................................................................................58 參考資料.........................................................................................................59 表目錄 表3-1 各組實驗材料之分光分析結果 (wt.%)..........................................14 圖目錄 圖2-1 Sn-Ag二元相圖[25]............................................................................7 圖2-2 懸臂樑加末端荷重之振動系統.........................................................8 圖2-3 末端偏移量 vs. 振動次數 (D-N曲線)............................................9 圖2-4 裂縫傳播路徑示意圖.......................................................................10 圖3-1 研究架構...........................................................................................15 圖3-2 (a)拉伸試片取樣示意圖 (b)振動試片取樣示意圖...................................................................16 圖3-3 (a)拉伸試片尺寸規格 (b)振動試片尺寸規格及夾持方式...................................................17 圖3-4 振動測試裝置示意圖.......................................................................18 圖3-5 試片末端偏移量隨低頻掃描至高頻之變化...................................19 圖4-1 Sn-3.0Ag-0.5Cu-xNi拉伸試片之OM觀察(模厚:2.4mm): (a) SAC305; (b) 0.02Ni; (c) 0.07Ni; (d) 0.1Ni............................24 圖4-2 Sn-3.0Ag-0.5Cu-xNi振動試片之OM觀察(模厚:4.5mm): (a) SAC305; (b) 0.02Ni; (c) 0.1Ni.................................................25 圖4-3 各相面積率:(a) 2.4mm模厚;(b) 4.5mm模厚..................................26 圖4-4 SAC305之EPMA元素分析.............................................................27 圖4-5 0.3Ni之EPMA元素分析..................................................................28 圖4-6 Sn-3.0Ag-0.5Cu-xNi於相同應變速率之工程應力應變曲線.........29 圖4-7 Sn-3.0Ag-0.5Cu-xNi之拉伸機械性質: (a) UTS; (b) YS (後頁續)................................................................30 圖4-7 Sn-3.0Ag-0.5Cu-xNi之拉伸機械性質: (c) TE; (d) UE (續前頁) .................................................................31 圖4-8 相同應變速率下之Sn-3.0Ag-0.5Cu-xNi之拉伸次表面OM觀察: (a) SAC305; (b) 0.02Ni (後頁續)....................................................32 圖4-8 相同應變速率下之Sn-3.0Ag-0.5Cu-xNi之拉伸次表面OM觀察: (c) 0.07Ni; (d) 0.1Ni (續前頁)........................................................33 圖4-9 Sn-3.0Ag-0.5Cu-xNi之拉伸破斷面SEM觀察: (a) SAC305; (b) 0.02Ni (後頁續)....................................................34 圖4-9 Sn-3.0Ag-0.5Cu-xNi之拉伸破斷面SEM觀察: (c) 0.07Ni; (d) 0.1Ni (續前頁)........................................................35 圖4-10 Sn-3.0Ag-0.5Cu-xNi之(a)真應力應變曲線; (b)加工硬化率........36 圖4-11 Sn-3.0Ag-0.5Cu-xNi於不同應變速率之流變應力應變曲線: (a)SAC305; (b)0.02Ni; (c)0.07Ni..................................................37 圖4-12 Sn-3.0Ag-0.5Cu-xNi之拉伸機械性質: (a) UTS; (b) YS (後頁續)................................................................38 圖4-11 Sn-3.0Ag-0.5Cu-xNi之拉伸機械性質: (a) TE; (b) UE (續前頁)..................................................................39 圖4-13 SAC305之拉伸次表面OM觀察: (a) 0.00075sec-1; (b) 0.003sec-1; (c) 0.012sec-1..............................40 圖4-14 0.02Ni之拉伸次表面OM觀察: (a) 0.00075sec-1; (b) 0.003sec-1; (c) 0.012sec-1..............................41 圖4-15 0.07Ni之拉伸次表面OM觀察: (a) 0.00075sec-1; (b) 0.003sec-1; (c) 0.012sec-1..............................42 圖4-16 Sn-3.0Ag-0.5Cu-xNi之高應變速率(0.012 sec-1)與低應變速率(0.00075 sec-1)拉伸之各應變量(0.2%及6%)的流應變力差值.......................................................................................................43 圖4-17 Sn-3.0Ag-0.5Cu-xNi之振動破壞次表面: (a) SAC305;(b) 0.02Ni;(c) 0.1Ni.....................................................44 圖4-18 Sn-3.0Ag-0.5Cu-xNi在固定出力值1.8G下的D-N曲線................45 圖4-19 相同末端初始偏移量(1.37mm)下,Sn-3.0Ag-0.5Cu-xNi之D-N曲線.......................................................................................................46 圖4-20 0.1Ni: (a) D-N曲線; (b) 於不同末端偏移量之共振頻率...........47 圖4-21 等出力值(1.8G)時,Sn-3.0Ag-0.5Cu-xNi之共振壽命....................48 圖4-22 相同末端初始偏移量(1.37mm)下,Sn-3.0Ag-0.5Cu-xNi之共振壽命.......................................................................................................49 圖5-1 0.1Ni遠離破斷面之OM觀察..........................................................54 圖5-2 Sn-3.0Ag-0.5Cu-xNi於不同應變速率之不均勻塑性變形量.........55 圖5-3 0.1Ni拉伸次表面:金屬間化合物脆性破斷....................................56 圖5-4 SAC305振動後之SEM觀察............................................................57

    1. 張淑如,「鉛對人體的危害」,勞工安全衛生簡訊,第12期,17-18頁,民國84年。
    2. C.M. Chuang and K.L. Lin, “Effect of Microelements Addition on the Interfacial Reation between Sn-Ag-Cu Solders and Cu Substrate”, Journal of Electronic Materials, Vol. 32, No.12, pp. 1426-1431, 2003.
    3. T.H. Chuang, S.F. Yen and H.M. Wu, “Intermetallic Formation in in Sn3Ag0.5Cu and Sn3Ag0.5Cu0.06Ni0.01Ge Solder BGA Packages with Immersion Ag Surface Finish”, Journal of Electronic Materials, Vol. 35, pp. 310-318, 2006.
    4. C.M. Chuang, P.C. Shi and K.L. Lin, “Mechanical Strength of Sn-3.5Ag Based Sodlers and Related Bondings”, Journal of Electronic Materials, Vol. 33, No.1, pp.1-6, 2004.
    5. T.H. Chuang, S.F. Yen and M.D. Cheng, “Intermetallic Reactions in Sn3Ag0.5Cu and Sn3Ag0.5Cu0.06Ni0.01Ge Solder BGA Packages with Au/Ni Surface Finishes”, Journal of Electronic Materials, Vol. 35, pp. 302-309, 2006.
    6. Q.J. Yang, H.L.J. Pang, Z.P. Wang, G.H. Lim, F.F. Yap and R.M. Lin, “Vibration Reliability Characterization of PBGA Assemblies”, Microelectronic Reliability, Vol. 40, pp. 1097-1107, 2000.
    7. S.M. McGuire, M.E. Fine, O. Buck and J.D. Achenbach, “Nondestructive Detection of Fatigue Cracks in PM304 Stainless Steel by Internal Friction and Elasticity”, Journal of Materials Research, Vol. 8, pp. 2216-2223, 1993.
    8. S.M. McGuire, M.E. Fine and J.D. Achenbach, “Crack Detection by Resonant Frequency Measurements”, Metallurgical & Materials Transactions A, Vol. 26A, pp. 1123-1127, 1995.
    9. Clifford L. Barber,「銲錫:基本與應用」,協志工業叢書,38,1-2頁,民國74年。
    10. W.J. Plumbridge, “Review Solders in Electronic”, Journal Materials Science, Vol. 31, pp. 2501-2514, 1996.
    11. Boyer and T.L. Gall, Metals Handbook, ASM, Desk Edition, Chap. 30, pp. 73-76, 1985.
    12. S. Vaynman and M.E. Fine, “Development of Fluxes for Lead-Free Solders Containing Zinc”, Scripta Materialia, Vol. 41, No. 12, pp. 1269-1271, 1999
    13. M. McCormack, S. Jin and G.W. Kammlott, “Suppression of Microstructural Coarsening and Creep Deformation in a Lead-Free Solder”, American Institute of Physics, Vol. 64, pp. 580-582, 1994.
    14. P.T. Vianco and D.R. Frear, “Issues in the Replacement of Lead-Bearing”, JOM, Vol. 45, pp. 14-19, 1993
    15. M.N. Islam, Y.C. Chan, M.J. Rizvi and W. Jillek, “Investigation of Interfacial Reactions of Sn-Zn Based and Sn-Ag-Cu Lead-Free Solder Alloys as Replacement for Sn-Pb Solder”, Journal of Alloys and Compounds, 400, pp. 136-144, 2005.
    16. N.C. Lee, “Getting Ready for Lead Free Solders”, Surface Mount Technology, No. 26, pp. 65-73, 1997.
    17. 李芳儀,「銅含量對Sn-Ag-Cu無鉛銲錫振動破壞特性之效應」,國立成功大學材料科學與工程學系碩士論文,民國九十二年。
    18. C.M. Chung, T.S. Lui and L.H. Chen, “Effect of Aluminum Addition on Tensile Properties of Naturally Aging Sn-9Zn Eutectic Solder”, Journal Materials Science, 37, pp. 191-195, 2002.
    19. M. Mccormack, S. Jin, H.S. Chen and D.A. Machusak, “New Lead-Free Sn-Zn-In Solder Alloys”, Journal of Electronic Materials, 123, pp. 687-690, 1994.
    20. Akio Hirose, Hiroto Yanagawa, Eiichi Ide and Kojiro F. Kobayashi, “Joint Strength and Interfacial Microstructure between Sn-Ag-Cu and Sn-Zn-Bi Solders and Cu Substrate”, Science and Technology of Advanced Materials, 5, pp. 267-276, 2004.
    21. K.S. Kim, S.H. Huh, K. Suganuma, “Effects of Cooling Speed on Microstructure and Tensile Properties of Sn-Ag-Cu alloys”, Materials Science and Engineering, A333, pp. 106-114, 2002.
    22. S.L. Allen, M.R. Notis, R.R. Chromik and R.P. Vinci, “Microstructural Evolution in Lead-Free Solder Alloys: Part II. Directionally Solidified Sn-Ag-Cu, Sn-Cu and Sn-Ag”, Journal of Materials Research, 19, pp. 1425-1431, 2004.
    23. X. Deng, N. Chawla, K.K. Chawla and M. Koopman, “Deformation Behavior of (Cu,Ag)-Sn Intermetallics by nanoindetation”, Acta Materialia, 52, pp. 4291-4303, 2004.
    24. S.L. Allen, M.R. Notis, R.R. Chromik and R.P. Vinci, “Microstructural Evolution in Lead-Free Solder Alloys: Part I. Cast Sn-Ag-Cu eutectic”, Journal of Materials Research, 19, pp. 1417-1424, 2004.
    25. “Maters Handbook Vol. 8 Metallography, Structures and Phase Digrams”, Ed. T. Lyman, H.E. Boyer, W.J. Carnes, ASM, Metals Park, Ohio, USA, pp. 256.
    26. S.S. Rao, “Mechanical Vibrations”, Addison-Wesley Publishing Company, Inc., 2nd., pp. 4-160, 1990.
    27. C.Y. Tang, M. Jie, W. Shen and K.C. Yung, “The Degradation of Elastic Properties of Aluminum Alloy 2024T3 Due to Strain Damage”, Scripta Materialia, Vol.38, No. 2, pp. 221-238, 1998.
    28. 孫慶鴻、張啟軍、姚慧珠編著,「振動與噪音的阻尼控制」,機械工業出版社, 38-57頁,民國81年。
    29. A. Granato and K. Lucke, “Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies”, Journal of Applied Physics, Vol. 27, pp. 583-593, 1956.
    30. S.E. Urreta De Pereyrem A.A. Ghilarducci De Salva and F. Louchet, “Precipitation Internal Friction Peak in Al-Mg-Si”, Physica Status Solidi, Vol. 139, pp. 345-360, 1993.
    31. J. Zhang, R.J. Perez and E.J. Lavernia, “Documentation of Damping Capacity of Metallic, Ceramic and Metal-Matrix Composite Materials”, Journal Materials Science, Vol. 28, pp. 2395-2404, 1993.
    32. R.J. Perez, J. Zhang, M.N. Gungor and E.J. Lavernia, “Damping Behavior of 6061Al/Gr Metal Matrix Composites”, Metallurgical & Materials Transactions A, Vol. 24A, pp. 701-711, 1993.
    33. E.J. Lavernia, R.J. Perez and J. Zhang, “Damping Behavior of Discontinuously Reinforced Al Alloy Metal-Matrix Composites”, Metallurgical & Materials Transactions A, Vol. 26A, pp. 2803-2818, 1995.
    34. M. Okabe, T. Mori and T. Mura, “Internal Friction Caused by Diffusion Around a Second-Phase Particle Al-Si Alloy”, Philosophical Magazine A, Vol. 44, pp. 1-12, 1981.
    35. A. Wolfenden, L.S. Cook and J.M. Wolla, “Phase Changes and Damping in Crystalline Materials”, M3D: Mechanics and Mechanism of Material Damping, ASTM STP 1169, V.K. Kinra and A. Wolfenden, Eds., American Society for Testing and Materials Philadelpgia, pp. 124-141, 1992.
    36. C.M. Chuang, T.S. Lui and L.H. Chen, “Effect of Lead Content on Vibration Fracture Behavior of Pb-Sn Eutectic Solder”, Journal of Materials Research, Vol.16, pp. 2644-2652, 2001.
    37. 莊強名,「無鉛化共晶銲錫合金之振動破壞特性研究」,國立成功大學材料科學及工程學系,博士論文,民國90年。
    38. J.M. Song, T.S. Lui, L.H. Chan and D.Y. Tsai, “Resonant Vibration Behavior of Lead-Free Solders”, Journal of Electronic Materials, Vol. 32, No. 12, pp. 1501-1508, 2003.
    39. 洪佳和,「亞共晶鋁-矽(-鎂)合金之共振破壞特性及其冶金影響因素之探討」,國立成功大學材料科學及工程學系,博士論文,民國90年。
    40. 藍國峰,「Sn-Zn-xAg無鉛銲錫合金之振動破壞特性研究」,國立成功大學材料科學及工程學系,碩士論文,民國91年。
    41. D. Taylor, “Fatigue Threshold”, Butterworth and Co. Ltd, pp. 71-91, 1989.
    42. S. Suresh and Gerberich, “ Fatigue of Materials”, Applied Mechanics Reviews, Vol. 45, pp. 291-292, 1992.
    43. S. Suresh, “Crack Deflection: Implication for the Growth of Long and Short Fatigue Cracks”, Metallurgical Transactions, Vol. 14A, pp. 2375-2385, 1983.
    44. H.T. Lee and Y.H. Lee, “Adhesive strength and tensile fracture of Ni particle enhancedSn–Ag composite solder joint”, Materials Science and Engineering, A419, pp. 172-180, 2006.
    45. O.A. Kaibyshev, “Relationship between Mechanisms of Deformation and Development of Dynamic Recrystallization”, Recrystallization ’90, Warrendale, PA, Minerals, Metals, and Materials Society, pp. 855-860, 1999.
    46. G. Rai and N.J. Grant, “On the Measurement of Superplasticity in an Al-Cu Alloy”, Metallurgical Transactions, 6A, pp. 385, 1975.
    47. A.H. Chokshi and T.G. Langdon, “The Mechanical Properties of the Superplastic Al-33 Pct Cu Eutectic Alloy”, Metallurgical Transactions, 19A, pp. 2487, 1988.

    下載圖示 校內:立即公開
    校外:2007-07-25公開
    QR CODE