| 研究生: |
張正群 Chang, Cheng-Chun |
|---|---|
| 論文名稱: |
懸臂樑之平面應力分析 Plane stress in cantilever |
| 指導教授: |
譚建國
Tarn, Jiann-Quo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 懸臂樑 、狀態空間法 、直角座標 、固定端 、奇異點 |
| 外文關鍵詞: | state space method, cantilever, symplectic orthogonal, singular points |
| 相關次數: | 點閱:94 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文採用狀態空間法探討懸臂樑自由端受外力作用下之變形與應力
分佈。由直角座標下二維彈性力學基本方程式出發,建立懸臂樑之狀態
空間方程式,據以解析。
固定端對懸臂樑之受力反應與變形影響很大,必須詳加分析。傳統
解法簡化了固定端之影響,本文考慮固定端全斷面位移為零之精確條
件,比較兩者之差異,結果顯示:
1. 狀態空間法與傳統解法在位移部分有五倍的最大誤差,而應力場部
分,應力11 之最大誤差為1.9倍,應力12 之最大誤差為17倍,應力22 之最大誤差
為極大;傳統只考慮固定端位移為零之簡化解與本文精確解有顯著
差異。
2. 運用狀態空間法處理上緣與下緣之奇異點,結果顯示固定端深度方
向位移,u有8%的誤差,v有19%的誤差,而應力11有9%的最大誤
差,應力12 有12%的最大誤差,應力22 有15%的最大誤差;加入奇異點之
探討有顯著差異。
On the basis of the state space approach, the stress and displacement
distributions of a cantilever subjected to bending moment, shear forces and
axial forces at the free end are studied with emphasis on the singularity at
the fixed end. The state space formalism of the problem is established from
two-dimensional basic equations of elasticity in Cartesian coordinates.
The reaction and deformation at the fixed end of cantilever beam
subjected to the loads require further analysis. The traditional method
simplified the fixed end conditions, but we consider the exact conditions of
the fixed end and compare the differences between these two results.
In the exact analysis, the displacements of two singular points in the fixed
end of cantilever beam are not satisfactory, so we individually handle the
singular points by using the state space method and get better results.
1. Tarn, J.Q., Tseng, W.D., Chang, H.H.,A circular elastic cylinder under its
own weight. International Journal of Solid and Structures,
46,2886-2896,2009.
2. Tarn, J.Q., Tseng, W.D., Chang, H.H.,A Hamiltonian State Space
Approach for 3D Analysis of circular cantileves. Journal of
Elasticity,101,207-237,2010.
3. Tarn, J.Q., A state space formalism for anisotropic elasticity. Part I:
Rectilinear anisotropic, International Journal of Solid and Structures
39,5143-5155,2002.
4. Tarn, J.Q., A state space formalism for anisotropic elasticity. Part II:
Cylindrical anisotropy, International Journal of Solid and Structures
39,5173-5184,2002.
5. Tarn, J.Q., Chang, H.H., Tseng, W.D., Axisymmetric deformation of a
transversely Isotropic cylindrical body: A Hamiltonian state-space
approach. Journal of Elasticity 97,131-154,2009.
6. Tarn, J.Q., Tseng, W.D., Exact analysis of curved beams and arches with
arbitrary end conditions: A Hamiltonian state space approach. Journal of
Elasticity 107,39-63,2012.
7. Timoshenko, S.P., Goodier, J.N., Theory of Elasticity, 3rd edition.
McGraw-Hill, New York,1970.
8. Wang, Y.M., Tarn, J.Q., Hsu, C.K., State space approach for stress decay
in laminates. International Journal of Solids and Structures 37,3535-3553
9. 鐘萬勰,彈性力學球解新體系,中國大連,大連理工大學出版社,
1995。
10. 曾維德,圓柱座標系統下彈性力學問題之狀態空間解析法,國立成功
大學土木工程研究所博士論文,2011。
11. 赵莉,功能梯度材料平面問題的辛彈性力學解法,浙江大學工學博士
學位論文,2010。