簡易檢索 / 詳目顯示

研究生: 許鎮宇
Hsu, Chen-Yu
論文名稱: 6061鋁合金三維選擇性雷射燒熔列印技術及材料發生破裂缺陷之理論數值模擬及驗證
Numerical Analysis of and Experimental Verifications for the Fracture Behavior Arising in the Selective Laser Melting of the AA6061 Powder
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 105
中文關鍵詞: 選擇性雷射燒熔Johnson-Cook模組裂紋預測最佳化參數
外文關鍵詞: Selective laser melting, Johnson-Cook model, prediction of cracks, optimized parameter
相關次數: 點閱:70下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來3D列印技術興起,在3D列印的領域中,選擇性雷射燒熔(Selective laser melting, SLM)因為材料為金屬且成品的機械強度優於鑄造品,可達到鍛造品的水平,被視為最具發展潛力的技術。本研究使用工業上常用的AA6061鋁合金材料作為實驗及模擬對象,以單層列印試件為基礎,隨後藉由商業軟體FLOW-3D計算孔隙率模組,該模組能計算三維空間下建立的隨機粉床的體積比,藉由此粉床模型,得出孔隙率,令粉床層的假設更為合理。由於鋁合金在列印過程容易產生裂痕,而此方向的研究工作,仍然未見報導,此鋁合金在國際3D列印界有極大的產業需求。在本研究中,利用LS-DYNA的Johnson-Cook model對應變、應力進行分析。利用微拉伸實驗所得的應力應變和破壞應變,結合MATLAB軟體中的實數編碼遺傳演算法(Real-Coded Genetic Algorithm)模組得出J-C模組的參數,再藉由此J-C模組找出發生裂痕的加工參數和延伸行為。從實驗結果得知,雷射間距對於裂紋發生的影響相比雷射功率和掃描速率較小,但仍然會對表面粗糙度造成影響,雷射能量密度越大,也就是雷射間距越小時,表面粗糙度越好。透過模擬及實驗的對比,可以得知J-C模組能夠很好得預測裂紋的發生,且能模擬出裂紋會垂直雷射掃描方向延伸的行為,再透過溫度場的模擬結果推測垂直延伸的原因。透過固定雷射功率改變掃描速率與固定掃描速率改變雷射功率的分析,能夠發現能量密度增加時,但裂紋發生機率會變高。由於表面粗糙度和裂紋都會影響成品的機械強度,因此在最佳化參數的選擇上,選擇較高的雷射能量密度,但不發生裂紋的加工參數。

    This research aims to analyze the appearances of the selective laser melting (SLM) printing results. To explore the physic phenomena of the metal powder being heated through laser, a SLM theory model was built through a commercial numerical simulation software LS-DYNA. The three-dimensional theory model established some physical mechanisms such as equivalent powder bed, laser heat source, Johnson-Cook model, and phase change etc.
    AA6061, a commonly used material in industry, but cracks appear in process of SLM. AA6061 was used in simulations of this research for conducting SLM to analyze the interactions between hatch distance, laser power and scanning speed. In addition, we also analyze thermal stress and fracture strain. Through the experiments, it is found that thermal stress increases when melting AA6061 start solidifying. Thermal stress plays an important role in cracks of the sample. By means of Johnson-Cook model, one can analyze fracture strain. The effects of various laser processing parameters to prevent cracking were discussed. To validate the accuracy and reliability of the theory model, compare the computation results with the experiment results. Computation results is consistence with the experiment results. It assures the reliability of the theory model. Through computation results and experimental results, we found that the cracks would occur as Laser energy density (LED) increase. We also found that surface roughness would be improved when LED increase. Consequently, we should select higher LED to get well surface roughness but could not exceed the LED which cracks appear.

    摘要 I Extended Abstract III INTRODUCTION IV MATERIALS AND METHODS IV RESULTS AND DISCUSSION VII CONCLUSION VIII 誌謝 X 目錄 XI 表目錄 XIV 圖目錄 XV 符號表 XXII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究目的 5 1-4 論文架構 6 第二章 基本理論 8 2-1 雷射理論 8 2-1-1 雷射與材料之交互性質 8 2-1-2 雷射熱傳模式 9 2-1-3 選擇性雷射燒熔之加工參數 10 2-2 有限元素法介紹 11 2-3 選擇性雷射燒熔溫度場數值理論 13 2-3-1 統御方程式 13 2-3-2 雷射表面熱源 15 2-4 選擇性雷射燒熔應力場數值理論 16 2-4-1 FEM應力場數值計算 16 2-4-2 Johnson-Cook數學模型 17 2-5 實數編碼遺傳演算法 24 2-5-1 產生初始族群 24 2-5-2 適應函數、選擇和複製 24 2-5-3 交配 25 2-5-4 突變 25 2-5-5 挑選子代個體和收斂準則 26 第三章 實驗規劃及實驗數據處理 32 3-1 選擇性雷射燒熔實驗 32 3-2 微奈米拉伸實驗方法 32 3-2-1 實驗試件簡介與特性 33 3-3 利用實驗結果得出Johnson-Cook參數 34 3-3-1 Johnson-Cook材料模型參數取得 34 3-3-2 Johnson-Cook破壞模型參數取得 34 3-4 顯微組織觀察實驗 35 第四章 數值模擬方法 45 4-1 金屬粉體之孔隙率 46 4-2 相變化材料性質 46 4-3 計算模型設定 47 4-3-1 理論模型設定 47 4-3-2 數值模擬流程 47 4-3-3 模型幾何與網格建立 48 4-3-4 模型之初始條件與邊界條件 49 第五章 結果與討論 56 5-1 單層列印面實驗結果缺陷分析 56 5-2 數值模擬結果 59 5-2-1 判斷該元素失效是否為裂紋 60 5-2-2 各加工參數模擬結果 61 5-2-3 裂紋發生過程 62 5-3 比較各加工參數對裂紋影響 63 5-3-1 固定掃描速率不同功率對裂紋之影響 64 5-3-2 固定雷射功率下不同掃描速率對裂紋的影響 64 5-4 最佳化參數預測 65 第六章 結論與未來展望 99 6-1 結論 99 6-2 未來展望 100 參考文獻 101

    [1] W. Meiners, K. Wissenbach, and A. Gasser, "Shaped body especially prototype or replacement part production," Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung eV, 1998-02-12.
    [2] 林華元, "Ti-6Al-4V 合金選擇性雷射熔融印製參數之建構," 臺北科技大學材料科學與工程研究所學位論文, pp. 1-65, 2020.
    [3] C. Kuo, P. Ye, and J. Liu, "Effects of elemental alloying on surface integrity in joining of composite powders with heterogeneous titanium substrates using selective laser melting," International Journal of Precision Engineering Manufacturing-Green Technology, vol. 7, no. 4, pp. 815-827, 2020.
    [4] 徐維駿, "以數值方式研究選擇性雷射燒熔過程," 中山大學機械與機電工程學系研究所學位論文, pp. 1-46, 2017.
    [5] 陳俊廷, "選擇性雷射熔融之有限元素模擬與實驗之研究," 交通大學機械工程系所學位論文, pp. 1-68, 2019.
    [6] 楊儒翰, "選擇性雷射熔化製程在介觀尺度之模擬系統開發與缺陷分析," 明志科技大學材料工程系碩士班學位論文, pp. 1-68, 2018.
    [7] J. Ciurana, L. Hernandez, and J. Delgado, "Energy density analysis on single tracks formed by selective laser melting with CoCrMo powder material," The International Journal of Advanced Manufacturing Technology, vol. 68, no. 5, pp. 1103-1110, 2013.
    [8] H. Gong, K. Rafi, T. Starr, and B. Stucker, "The effects of processing parameters on defect regularity in Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting," in 2013 International Solid Freeform Fabrication Symposium, 2013: University of Texas at Austin.
    [9] H. Gu, H. Gong, D. Pal, K. Rafi, T. Starr, and B. Stucker, "Influences of energy density on porosity and microstructure of selective laser melted 17-4PH stainless steel," in 2013 International Solid Freeform Fabrication Symposium, 2013: University of Texas at Austin.
    [10] F. Klocke and Wagner, "Coalescence behaviour of two metallic particles as base mechanism of selective laser sintering," CIRP Annals, vol. 52, no. 1, pp. 177-180, 2003.
    [11] R. Li, J. Liu, Y. Shi, L. Wang, and W. Jiang, "Balling behavior of stainless steel and nickel powder during selective laser melting process," The International Journal of Advanced Manufacturing Technology, vol. 59, no. 9, pp. 1025-1035, 2012.
    [12] K. G. Prashanth, S. Scudino, T. Maity, J. Das, and J. Eckert, "Is the energy density a reliable parameter for materials synthesis by selective laser melting?," Materials Research Letters, vol. 5, no. 6, pp. 386-390, 2017.
    [13] A. Simchi, "Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features," Materials Science, vol. 428, no. 1-2, pp. 148-158, 2006.
    [14] J. Yin, H. Zhu, L. Ke, P. Hu, C. He, H. Zhang, and X. Zeng, "A finite element model of thermal evolution in laser micro sintering," The International Journal of Advanced Manufacturing Technology, vol. 83, no. 9, pp. 1847-1859, 2016.
    [15] A. Hussein, L. Hao, C. Yan, and R. Everson, "Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting," Materials and Design, vol. 52, pp. 638-647, 2013.
    [16] Y. Li and D. Gu, "Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder," Materials and Design, vol. 63, pp. 856-867, 2014.
    [17] J. Romano, L. Ladani, and M. Sadowski, "Thermal modeling of laser based additive manufacturing processes within common materials," Procedia Manufacturing, vol. 1, pp. 238-250, 2015.
    [18] Y. Lee and D. Farson, "Surface tension-powered build dimension control in laser additive manufacturing process," The International Journal of Advanced Manufacturing Technology, vol. 85, no. 5, pp. 1035-1044, 2016.
    [19] S. A. Khairallah and A. Anderson, "Mesoscopic simulation model of selective laser melting of stainless steel powder," Journal of Materials Processing Technology, vol. 214, no. 11, pp. 2627-2636, 2014.
    [20] M. Bayat, S. Mohanty, and J. H. Hattel, "Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF," International Journal of Heat Mass Transfer, vol. 139, pp. 95-114, 2019.
    [21] C. Chen, G. Lian, J. Jiang, and Q. Wang, "Simplification and experimental investigation of geometrical surface smoothness model for multi-track laser cladding processes," Journal of Manufacturing Processes, vol. 36, pp. 621-628, 2018.
    [22] C.-S. Chang, K.-T. Wu, C.-F. Han, T.-W. Tsai, S.-H. Liu, and J.-F. Lin, "Establishment of the Model Widely Valid for the Melting and Vaporization Zones in Selective Laser Melting Printings Via Experimental Verifications," International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 9, no. 1, pp. 143-162, 2022.
    [23] 林鈺霖, "選擇性雷射燒熔AA6061多道次及多層數值分析與實驗驗證," 成功大學機械工程學系學位論文, pp. 1-141, 2021.
    [24] C.-F. Han, Y.-Z. Guo, C.-J. Chung, C.-H. Shen, and J.-F. Lin, "Effects of SiO2 film thickness and operating temperature on thermally-induced failures in through-silicon-via structures," Microelectronics Reliability, vol. 83, pp. 1-13, 2018.
    [25] C.-F. Han, R.-H. Tasi, G.-H. Wu, C.-S. Chang, C.-J. Chung, C.-H. Shen, W.-L. Yang, C.-L. Lin, and J.-F. Lin, "Evaluations of heat treatment on polymer adhesive bonding and thermal-induced failure of two-layer through-silicon via structures," Sensors and Actuators A: Physical, vol. 285, pp. 685-699, 2019.
    [26] W. M. Steen and J. Mazumder, Laser material processing. springer science & business media, 2010.
    [27] C. Walsh, "Laser welding–literature review," Materials Science, vol. 1, 2002.
    [28] C. Li, C. Fu, Y. Guo, and F. Fang, "A multiscale modeling approach for fast prediction of part distortion in selective laser melting," Journal of materials processing technology, vol. 229, pp. 703-712, 2016.
    [29] 方怡平, "利用3-D FEM分析水分對RCP疊合封裝體之等效應變影響," 成功大學工程科學系學位論文, pp. 1-124, 2014.
    [30] A. A. C. LIVERMORE SOFTWARE TECHNOLOGY(LST), "LS-DYNA Keyword User's Manual, LS-DYNA R13," vol. Volume II, 2021.
    [31] M. Rombouts, L. Froyen, A. Gusarov, E. H. Bentefour, and C. Glorieux, "Photopyroelectric measurement of thermal conductivity of metallic powders," Journal of applied physics, vol. 97, no. 2, p. 024905, 2005.
    [32] X. Wang, T. Laoui, J. Bonse, J.-P. Kruth, B. Lauwers, and L. Froyen, "Direct selective laser sintering of hard metal powders: experimental study and simulation," The International Journal of Advanced Manufacturing Technology, vol. 19, no. 5, pp. 351-357, 2002.
    [33] A. Streek, P. Regenfuss, and H. Exner, "Fundamentals of energy conversion and dissipation in powder layers during laser micro sintering," Physics Procedia, vol. 41, pp. 858-869, 2013.
    [34] 工業技術研究院雷射與積層製造科技中心, 2018.
    [35] R. Remsburg, Thermal design of electronic equipment. CRC press, 2017.
    [36] G. R. Johnson and W. H. Cook, "A constitutive model and data for metals subjected to large strains, high strain rates and high," Proceedings of the 7th International Symposium on Ballistics, pp. 541-547, 2009.
    [37] M. Murugesan and D. W. Jung, "Johnson Cook material and failure model parameters estimation of AISI-1045 medium carbon steel for metal forming applications," Materials, vol. 12, no. 4, p. 609, 2019.
    [38] M. Murugesan and D. W. Jung, "Two flow stress models for describing hot deformation behavior of AISI-1045 medium carbon steel at elevated temperatures," Heliyon, vol. 5, no. 4, p. e01347, 2019.
    [39] X. Shen, D. Zhang, C. Yao, L. Tan, and X. Li, "Research on Parameter Identification of Johnson–Cook Constitutive Model for TC17 Titanium Alloy Cutting Simulation," Materials Today Communications, p. 103772, 2022.
    [40] L. J. Eshelman and J. D. Schaffer, "Real-coded genetic algorithms and interval-schemata," in Foundations of genetic algorithms, vol. 2: Elsevier, 1993, pp. 187-202.
    [41] T. Yalcinoz, H. Altun, and M. Uzam, "Economic dispatch solution using a genetic algorithm based on arithmetic crossover," in 2001 IEEE Porto Power Tech Proceedings (Cat. No. 01EX502), 2001, vol. 2, p. 4 pp. vol. 2: IEEE.
    [42] A. Ladewig, G. Schlick, M. Fisser, V. Schulze, and U. Glatzel, "Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process," Additive Manufacturing, vol. 10, pp. 1-9, 2016.
    [43] Kammrath & Weiss GmbH, DDS32. Available: https://www.kammrath-weiss.com/de/zug-druck-module/, 2022/6/3
    [44] D. Systèmes, "Simulation of the ballistic perforation of aluminum plates with Abaqus/Explicit," Abaqus Technol. Brief, 2012.
    [45] S. Art, "Using LS-DYNA for Heat Transfer & Coupled Thermal-Stress Problems," 2012.
    [46] K. C. Mills, Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing, 2002.
    [47] K. Fraser, L. St-Georges, and L. I. Kiss, "Prediction of defects in a friction stir welded joint using the smoothed particle hydrodynamics method," in Proceedings of the 7th Asia Pacific IIW International Congress, Singapore Management University, Singapore, 2013, pp. 8-10.

    下載圖示 校內:立即公開
    校外:2024-07-31公開
    QR CODE