簡易檢索 / 詳目顯示

研究生: 黎仲仁
Le, Trong-Nhan
論文名稱: 金屬積層製造領域多尺度和多物理狀態之數值模擬
Multi-scale and multi-physics numerical simulation in Powder-based Metallic Additive Manufacturing
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 188
中文關鍵詞: 雷射粉床熔融電子束熔化凝固和熔化流體粒子交互作用電子束吸收率
外文關鍵詞: Laser Powder Bed Fusion, Electron Beam Melting, solidification and melting, fluid-particle interaction, electron beam absorption
相關次數: 點閱:160下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於粉床的積層製造技術,如雷射粉床熔融或電子束熔化,在過去十年中已經徹底改變了製造業,因為此技術能夠在不需要額外工具下生產具有高度複雜幾何形狀的金屬零件。此外,由於這些製程固有的定向快速熔化以及凝固的現象,與傳統的製造技術如鑄造以及鍛造相比,列印的零件具有獨特的機械與微觀結構特性。因此,列印參數可用來定制同一構件內的機械和微觀結構變化,為4D打印技術鋪路。儘管為各個工業領域帶來了眾多優勢,此技術仍然面臨著許多跳戰,從構件的品質、製程的穩定性和一致性,到輕質材料或易裂材料的可印製性,造成這些障礙的主要原因是在列印過程中發生了無數物理現象的複雜相互作用,熱源-物質相互作用、快速融化和凝固、熔池以及腔體的流體力學、刮刀和流場引起的粒子動力學、材料的蒸發冷凝、微觀結構演變和殘餘應力累積是造成列印過程複雜性的主要物理現象,僅舉幾例。全面了解這些物理原理、交互作用以及對於列印零件的影響,不僅是控制製程品質和穩定性的關鍵,而且是開啟製造具有獨特微觀結構和機械性能的能力,這對於傳統製造技術是難以達到的。隨著電腦硬體設備的進步,電腦計算方法已成為研究人員揭示這些物理現象潛在機制的首選方法,而最終目標為製成優化以及客製化。本論文致力於使用廣泛的數值模擬來揭示該製程中一些最重要的物理現象,如材料的快速熔化凝固、熔池和腔體內部的流體力學、由於金屬蒸氣動力學以及材料對於電子束的吸收率所帶來的粉末夾帶、噴濺、剝蝕等。本論文有助於理解過程以及製程的優化及客製化。此外,研究結果可以為3D列印輕質材料鋪路,例如鎂,其可印製性仍然是最大的挑戰。

    Powder bed based additive manufacturing technologies such as Laser Powder Bed Fusion (L-PBF) or Selective Electron Beam Melting (SEBM) have been revolutionizing the manufacturing industry for the past decade with their ability to produce functional metallic components with highly complex geometry without the need for additional tooling. In addition, due to the intrinsic directional rapid melting and solidification phenomenon of those processes, the printed parts possess unique sets of mechanical and microstructural properties compared to conventional manufacturing techniques such as casting or wrought. Hence, the printing parameters can be used to tailor the mechanical and microstructural variation within the same built part, paving the way to 4-D printing. Despite a multitude of advantages brought to various industrial fields, the technology still has a wide range of challenges from the quality of the built part, the stability and consistency of the process, to the printability of light-weight materials or crack-prone materials. The primary cause for those obstacles is the complex interplay of a myriad of physics occurring during the printing process. Heat source-matter interactions, rapid melting and solidification, fluid dynamics in both melt-pool and in the chamber, particle dynamics induced by the spreader and the flow field, evaporation and condensation of materials, microstructure evolution, and residual stress accumulation are some primary physics contributing to the complex of the printing process, just to name a few. Acquiring a full understanding of those physics, their interplays, and their effects on the printed parts is the key to not only control the quality and stability of the process but also unlock the ability to manufacture components with unique microstructural and mechanical properties that is impossible for conventional manufacturing techniques to deliver. With the advances of computer hardware, computational methods have been the weapon of choice for researchers to reveal the underlying mechanism of those physical phenomena with the final goal is process optimization and customization. This thesis is dedicated to use a wide range of numerical simulations to unveil some of the most important physics in the process such as the rapid melting and solidification of materials, the fluid dynamics inside the melt-pool and inside the chamber, the complex physics of powder entrainment, spatter and denudation formation due to the dynamics of metal vapor, and the absorption to electron beam of materials. The outputs of this thesis assist significantly to the understanding of the process, hence, contributing to the optimization and customization of the process as well. In addition, obtained results in this work may pave a way to 3-D print light-weight materials such as magnesium whose printability remains the biggest challenge.

    ACKOWLEDGEMENT I ABSTRACT II 中文摘要 IV LIST OF FIGURE XI LIST OF TABLE XIX CHAPTER 1 INTRODUCTION 1 1.1 Research background 1 1.2 Literature review of the simulation of melting and solidification of the L-PBF process 4 1.3 Literature review of the particle-fluid interactions inside the L-PBF chamber 7 1.4 Literature review of the monitoring system development for the L-PBF process 10 1.5 Literature review of the heat source modelling for the SEBM process 13 1.6 Motivation and structure of this study 15 CHAPTER 2 EFFECTS OF SULFUR CONCENTRATION AND MARANGONI CONVECTION ON MELT-POOL FORMATION IN TRANSITION MODE OF L-PBF PROCESS 18 2.1. Marangoni effect 18 2.1.1. Effect of sulfur content on surface tension gradient (dγ/dT) 18 2.1.2. Estimation of surface tension gradient (dγ/dT) 21 2.2. Three-dimensional thermal-fluid model 21 2.3. Verification of simulation model with experimental data in [92] 30 2.4. Experimental procedure and results 40 2.5. Conclusions 48 CHAPTER 3 NUMERICAL SIMULATION AND EXPERIMENTAL VALIDATION OF MELTING AND SOLIDIFICATION PROCESS IN LASER POWDER BED FUSION OF IN718 ALLOY 51 3.1. Three-dimensional heat-and-mass transfer simulation model 51 3.1.1. Basic assumptions 51 3.1.2. Governing equations 53 3.1.3. Volumetric heat source 55 3.1.4. Modeling of melting and solidification processes in L-PBF treatment of IN718 57 3.1.5. Initial conditions and boundary conditions 60 3.1.6. Numerical solution procedure 62 3.2. In-situ monitoring system for measuring melt-pool length and above-substrate width 64 3.3. Results and discussions 67 3.3.1. Melt-pool depth and below-substrate width 67 3.3.2. Melt-pool length and above-substrate width 72 3.4. Conclusions 77 CHAPTER 4 NUMERICAL INVESTIGATION ON THE POWDER ENTRAINMENT, DENUDATION, AND SPATTERING IN LASER POWDER BED FUSION PROCESS 80 4.1. CFD-DEM coupled simulation 81 4.1.1. Important assumptions 81 4.1.2. Computational fluid dynamics (CFD) 81 4.1.3. Discrete element method (DEM) 82 4.1.4. CFD-DEM two-way coupling of momentum and energy 84 4.1.5. Domain description 85 4.2. Results and discussions 88 4.2.1. Typical simulations 88 4.2.2. Effects of spouting angle, chamber pressure, and gravitational force on the denudation and spatter suppression 99 4.3. Conclusions 108 CHAPTER 5 VISION-BASED IN-SITU MONITORING SYSTEM FOR MELT-POOL DETECTION IN LASER POWDER BED FUSION PROCESS 110 5.1. Proposed Melt-Pool Boundary Detection Method 110 5.1.1. Perspective transformation and spatial resolution calibration 110 5.1.2. Dilation process for spatter removal 112 5.1.3. Melt-pool boundary detection using intensity gradient approach 114 5.2. Experimental Setup 118 5.3. Experimental results 120 5.3.1. Experimental results for IN718 120 5.3.2. Experimental results for SS316L 125 5.4. Conclusions and future work 127 CHAPTER 6 MULTI-SCALE MODELING OF SELECTIVE ELECTRON BEAM MELTING OF TI6AL4V TITANIUM ALLOY 129 6.1. The volumetric heat source for powder-bed SEBM process 129 6.1.1. The effective interaction modeling of electron-atom interactions via Monte Carlo simulation at the microscale 131 6.1.2. Mesoscale simulation with powder bed model implementation 136 6.1.3. Volumetric heat source 141 6.2. Material properties 142 6.3. Macroscale heat transfer simulations 144 6.3.1. Mathematical model 144 6.3.2. Finite element method 145 6.4. Results and Discussions 147 6.4.1. Typical simulation results 147 6.4.2. Model validation 148 6.5. Conclusions 159 CHAPTER 7 CONCLUSIONS AND FUTURE WORKS 161 7.1. Conclusions 161 7.2. Future works 162 LIST OF JOURNAL PAPER 163 LIST OF CONFERENCE PAPER 164 LIST OF AWARDS 165 REFERENCES 166

    [1] L.E. Criales, Y.M. Arısoy, B. Lane, S. Moylan, A. Donmez, T. Özel, Laser powder bed fusion of nickel alloy 625: Experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis, Int. J. Mach. Tools Manuf. 121 (2017) 22–36. doi:10.1016/j.ijmachtools.2017.03.004.
    [2] H.C. Tran, Y.L. Lo, M.H. Huang, Analysis of Scattering and Absorption Characteristics of Metal Powder Layer for Selective Laser Sintering, 22 (2017) 1807–1817.
    [3] P. Bidare, I. Bitharas, R.M. Ward, M.M. Attallah, A.J. Moore, Fluid and particle dynamics in laser powder bed fusion, Acta Mater. 142 (2018) 107–120. doi:10.1016/j.actamat.2017.09.051.
    [4] I. Bitharas, A. Burton, A.J. Ross, A.J. Moore, Visualisation and numerical analysis of laser powder bed fusion under cross-flow, Addit. Manuf. 37 (2021) 101690. doi:10.1016/j.addma.2020.101690.
    [5] B.J. Simonds, J.R. Tanner, A. Artusio-Glimpse, P.A. Williams, N.D. Parab, C. Zhao, T. Sun, The Causal Relationship between Melt Pool Geometry and Energy Absorption Measured in Real Times During Laser-Based Manufacturing, Applied Materials Today 23 (2021) 101049. doi:10.1016/j.apmt.2021.101049.
    [6] J. Chen, L. Zheng, Z. Feng, W. Zhang, R.R. Dehoff, Prediction of material thermal properties and beam-particle interaction in meso-scale during electron beam additive manufacturing, in The Mater. Sci. Technol. Conf. Exhib. 2013 (MST 2013), 2013. 1 (2013) 2–8.
    [7] H.C. Tran, Y.L. Lo, Heat transfer simulations of selective laser melting process based on volumetric heat source with powder size consideration, J. Mater. Process. Technol. 255 (2018) 411–425. doi:10.1016/j.jmatprotec.2017.12.024.
    [8] W. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory, Mater. Sci. Technol. 31 (2015) 957–968. doi:10.1179/1743284714Y.0000000728.
    [9] P.S. Cook, A.B. Murphy, Simulation of melt pool behaviour during additive manufacturing: Underlying physics and progress, Addit. Manuf. 31 (2020) 100909. doi:10.1016/j.addma.2019.100909.
    [10] A. Bin Anwar, I.H. Ibrahim, Q.C. Pham, Spatter transport by inert gas flow in selective laser melting: A simulation study, Powder Technol. 352 (2019) 103–116. doi:10.1016/j.powtec.2019.04.044.
    [11] X. Zhang, B. Cheng, C. Tuffile, Simulation study of the spatter removal process and optimization design of gas flow system in laser powder bed fusion, Addit. Manuf. 32 (2020) 101049. doi:10.1016/j.addma.2020.101049.
    [12] M. Schniedenharn, F. Wiedemann, J.H. Schleifenbaum, Visualization of the shielding gas flow in SLM machines by space-resolved thermal anemometry, Rapid Prototyp. J. 8 (24) 1296-1304. doi:10.1108/RPJ-07-2017-0149.
    [13] B. Ferrar, L. Mullen, E. Jones, R. Stamp, C.J. Sutcliffe, Gas flow effects on selective laser melting (SLM) manufacturing performance, J. Mater. Process. Technol. 212 (2) 355-364. doi:10.1016/j.jmatprotec.2011.09.020.
    [14] A. Ladewig, G. Schlick, M. Fisser, V. Schulze, U. Glatzel, Influence of the shielding gas flow on the removal of process by-products in the selective laser melting process, Addit. Manuf. 10 (2016) 1-9. doi:10.1016/j.addma.2016.01.004.
    [15] H. Gu, L. Li, Computational fluid dynamic simulation of gravity and pressure effects in laser metal deposition for potential additive manufacturing in space, Int. J. Heat Mass Transf. 140 (2019) 51–65. doi:10.1016/j.ijheatmasstransfer.2019.05.081.
    [16] S. Wolff, Preliminary study on the influence of an external magnetic field on melt pool behavior in laser melting of 4140 steel using in-situ X-ray imaging, J. Micro- Nano-Manufacturing. 8.4 (2013) 1–19. doi:10.1115/1.4049952.
    [17] Omer, Üstünda, Influence of oscillating magnetic field on the keyhole stability in deep penetration laser beam welding, Opt. Laser Technol. J. 135 (2021) 106715. doi:10.1016/j.optlastec.2020.106715.
    [18] S. Haeri, S. Haeri, J. Hanson, S. Lot, Analysis of radiation pressure and aerodynamic forces acting on powder grains in powder-based additive manufacturing, Powder Technol. 368 (2020) 125–129. doi:10.1016/j.powtec.2020.04.031.
    [19] P. Bidare, I. Bitharas, R.M. Ward, M.M. Attallah, A.J. Moore, Laser powder bed fusion in high-pressure atmospheres, Int. J. Adv. Manuf. Technol. 99 (2018) 543–555. doi:10.1007/s00170-018-2495-7.
    [20] P. Bidare, I. Bitharas, R.M. Ward, M.M. Attallah, A.J. Moore, Laser powder bed fusion at sub-atmospheric pressures, Int. J. Mach. Tools Manuf. 130–131 (2018) 65–72. doi:10.1016/j.ijmachtools.2018.03.007.
    [21] M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, W.E. King, Denudation of metal powder layers in laser powder-bed fusion processes, Addit. Manuf. Handb. Prod. Dev. Def. Ind. 114 (2017) 677–693. doi:10.1201/9781315119106.
    [22] Q. Guo, C. Zhao, M. Qu, L. Xiong, L.I. Escano, S.M.H. Hojjatzadeh, N.D. Parab, K. Fezzaa, W. Everhart, T. Sun, L. Chen, In-situ characterization and quantification of melt pool variation under constant input energy density in laser powder-bed fusion additive manufacturing process, Addit. Manuf. 28 (2019) 600–609. doi:10.1016/j.addma.2019.04.021.
    [23] C.G. Klingaa, S. Mohanty, C. V. Funch, A.B. Hjermitslev, L. Haarh-Lillevang, J.H. Hattel, Towards a digital twin of laser powder bed fusion with a focus on gas flow variables, J. Manuf. Process. 65 (2021) 312–327. doi:10.1016/j.jmapro.2021.03.035.
    [24] Y. Zhao, K. Aoyagi, K. Yamanaka, A. Chiba, Role of operating and environmental conditions in determining molten pool dynamics during electron beam melting and selective laser melting, Addit. Manuf. 36 (2020) 101559. doi:10.1016/j.addma.2020.101559.
    [25] A. V. Gusarov, I. Yadroitsev, P. Bertrand, I. Smurov, Model of Radiation and Heat Transfer in Laser-Powder Interaction Zone at Selective Laser Melting, J. Heat Transfer. 131 (2009) 072101. doi:10.1115/1.3109245.
    [26] Y. Li, K. Zhou, S.B. Tor, C.K. Chua, K.F. Leong, Heat transfer and phase transition in the selective laser melting process, Int. J. Heat Mass Transf. 108 (2017) 2408–2416. doi:10.1016/j.ijheatmasstransfer.2017.01.093.
    [27] U. Scipioni Bertoli, G. Guss, S. Wu, M.J. Matthews, J.M. Schoenung, In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing, Mater. Des. 135 (2017) 385–396. doi:10.1016/j.matdes.2017.09.044.
    [28] T. Mukherjee, H.L. Wei, A. De, T. DebRoy, Heat and fluid flow in additive manufacturing—Part I: Modeling of powder bed fusion, Comput. Mater. Sci. 150 (2018) 304-313. doi:10.1016/j.commatsci.2018.04.022.
    [29] H.J. Willy, X. Li, Z. Chen, T.S. Herng, S. Chang, C.Y.A. Ong, C. Li, J. Ding, Model of laser energy absorption adjusted to optical measurements with effective use in finite element simulation of selective laser melting, Mater. Des. 157 (2018) 24–34. doi:10.1016/j.matdes.2018.07.029.
    [30] Q. Chen, G. Guillemot, C.A. Gandin, M. Bellet, Numerical modelling of the impact of energy distribution and Marangoni surface tension on track shape in selective laser melting of ceramic material, Addit. Manuf. 21 (2018) 713–723. doi:10.1016/j.addma.2018.03.003.
    [31] T. Heeling, M. Cloots, K. Wegener, Melt pool simulation for the evaluation of process parameters in selective laser melting, Addit. Manuf. 14 (2017) 116–125. doi:10.1016/j.addma.2017.02.003.
    [32] C.C. Tseng, C.J. Li, Numerical investigation of interfacial dynamics for the melt pool of Ti-6Al-4V powders under a selective laser, Int. J. Heat Mass Transf. 134 (2019) 906–919. doi:10.1016/j.ijheatmasstransfer.2019.01.030.
    [33] S.A. Khairallah, A. Anderson, Mesoscopic simulation model of selective laser melting of stainless steel powder, J. Mater. Process. Technol. 214 (2014) 2627–2636. doi:10.1016/j.jmatprotec.2014.06.001.
    [34] W. Yan, W. Ge, Y. Qian, S. Lin, B. Zhou, W.K. Liu, F. Lin, G.J. Wagner, Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting, Acta Mater. 134 (2017) 324–333. doi:10.1016/j.actamat.2017.05.061.
    [35] M. Bayat, S. Mohanty, J.H. Hattel, Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF, Int. J. Heat Mass Transf. 139 (2019) 95–114. doi:10.1016/j.ijheatmasstransfer.2019.05.003.
    [36] H. Xin, W. Sun, J. Fish, Discrete element simulations of powder-bed sintering-based additive manufacturing, Int. J. Mech. Sci. 149 (2017) 373-392. doi:10.1016/j.ijmecsci.2017.11.028.
    [37] D.K. Aidun, S.A. Martin, Effect of Sulfur and Oxygen on Weld Penetration of High-Purity Austenitic Stainless Steels, Journal of Materials Engineering and Performance, 6 (1997) 496–502.
    [38] E. Ahmadi, A.R. Ebrahimi, Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process, J. Mater. Eng. Perform. 24 (2014) 1065–1071. doi:10.1007/s11665-014-1336-6.
    [39] K.C. Mills, B.J. Keene, R.F. Brooks, A. Shirali, Marangoni effects in welding, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 356 (1998) 911-925. doi:10.1098/rsta.1998.0196.
    [40] M. Bayat, S. Mohanty, J.H. Hattel, A systematic investigation of the effects of process parameters on heat and fluid flow and metallurgical conditions during laser-based powder bed fusion of Ti6Al4V alloy, Int. J. Heat Mass Transf. 139 (2019) 213–230. doi:10.1016/j.ijheatmasstransfer.2019.05.017.
    [41] L. Aucott, H. Dong, W. Mirihanage, R. Atwood, A. Kidess, S. Gao, S. Wen, J. Marsden, S. Feng, M. Tong, T. Connolley, M. Drakopoulos, C.R. Kleijn, I.M. Richardson, D.J. Browne, R.H. Mathiesen, H. V. Atkinson, Revealing internal flow behaviour in arc welding and additive manufacturing of metals, Nat. Commun. 9 (2018) 1–7. doi:10.1038/s41467-018-07900-9.
    [42] T. Fuhrich, P. Berger, H. Hügel, Marangoni effect in laser deep penetration welding of steel, J. Laser Appl. 13 (2001) 178–186. doi:10.2351/1.1404412.
    [43] A. Kidess, S. Kenjereš, B.W. Righolt, C.R. Kleijn, Marangoni driven turbulence in high energy surface melting processes, Int. J. Therm. Sci. 104 (2016) 412–422. doi:10.1016/j.ijthermalsci.2016.01.015.
    [44] A. Kidess, M. Tong, G. Duggan, D.J. Browne, S. Kenjereš, I. Richardson, C.R. Kleijn, An integrated model for the post-solidification shape and grain morphology of fusion welds, Int. J. Heat Mass Transf. 85 (2015) 667-678. doi:10.1016/j.ijheatmasstransfer.2015.01.144.
    [45] D.R. Poirier, Permeability for flow of interdendritic liquid in columnar-dendritic alloys, Metall. Trans. B. 18 (1987) 245-255. doi:10.1007/BF02658450.
    [46] COMSOL INC, COMSOL MULTIPHYSICS MODELING SOFTWARE, (2019). https://www.comsol.com (accessed June 10, 2019).
    [47] I. ANSYS, ANSYS Fluent, (2019). https://www.ansys.com/products/fluids/ansys-fluent (accessed June 10, 2019).
    [48] M. Eickhoff, Solidification modeling with user defined function in Ansys Fluent, SINTEF Proceedings 2 (2017) 150-160.
    [49] S. Cooke, K. Ahmadi, S. Willerth, R. Herring, Metal additive manufacturing: Technology, metallurgy and modelling, J. Manuf. Process. 57 (2020) 978–1003. doi:10.1016/j.jmapro.2020.07.025.
    [50] Z.A. Young, Q. Guo, N.D. Parab, C. Zhao, M. Qu, L.I. Escano, K. Fezzaa, W. Everhart, T. Sun, L. Chen, Types of spatter and their features and formation mechanisms in laser powder bed fusion additive manufacturing process, Addit. Manuf. 36 (2020) 101438. doi:10.1016/j.addma.2020.101438.
    [51] M. Gao, Y. Kawahito, S. Kajii, Observation and understanding in laser welding of pure titanium at subatmospheric pressure, Opt. Express. 25 (2017) 13539. doi:10.1364/oe.25.013539.
    [52] J. Yin, D. Wang, L. Yang, H. Wei, P. Dong, L. Ke, G. Wang, H. Zhu, X. Zeng, Correlation between forming quality and spatter dynamics in laser powder bed fusion, Addit. Manuf. 31 (2020) 100958. doi:10.1016/j.addma.2019.100958.
    [53] U. Ali, R. Esmaeilizadeh, F. Ahmed, D. Sarker, W. Muhammad, A. Keshavarzkermani, Y. Mahmoodkhani, E. Marzbanrad, E. Toyserkani, Identification and characterization of spatter particles and their effect on surface roughness , density and mechanical response of 17-4 PH stainless steel laser powder-bed fusion parts, Mater. Sci. Eng. A. 756 (2019) 98–107. doi:10.1016/j.msea.2019.04.026.
    [54] Q. Guo, C. Zhao, L.I. Escano, Z. Young, L. Xiong, K. Fezzaa, W. Everhart, B. Brown, T. Sun, L. Chen, Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing process revealed by in-situ high-speed high-energy x-ray imaging, Acta Mater. 151 (2018) 169–180. doi:10.1016/j.actamat.2018.03.036.
    [55] M. Taheri Andani, R. Dehghani, M.R. Karamooz-Ravari, R. Mirzaeifar, J. Ni, Spatter formation in selective laser melting process using multi-laser technology, Mater. Des. 131 (2017) 460–469. doi:10.1016/j.matdes.2017.06.040.
    [56] A.T. Sutton, C.S. Kriewall, M.C. Leu, J.W. Newkirk, B. Brown, Characterization of laser spatter and condensate generated during the selective laser melting of 304L stainless steel powder, Addit. Manuf. 31 (2020) 100904. doi:10.1016/j.addma.2019.100904.
    [57] A. Masmoudi, R. Bolot, C. Coddet, Investigation of the laser-powder-atmosphere interaction zone during the selective laser melting process, J. Mater. Process. Technol. 225 (2015) 122–132. doi:10.1016/j.jmatprotec.2015.05.008.
    [58] X. Li, W. Tan, M. Asme, Numerical Modeling of Powder Gas Interaction Relative to Laser Powder Bed Fusion Process, J. Manuf. Sci. Eng. 143 (2021) 1–7. doi:10.1115/1.4048443.
    [59] H. Chen, W. Yan, Spattering and denudation in laser powder bed fusion process: multiphase flow modelling, Acta Mater. 196 (2020) 154–167. doi:10.1016/j.actamat.2020.06.033.
    [60] X. Li, C. Zhao, T. Sun, W. Tan, Revealing transient powder-gas interaction in laser powder bed fusion process through multi-physics modeling and high-speed synchrotron X-ray imaging, Addit. Manuf. 35 (2020) 101362. doi:10.1016/j.addma.2020.101362.
    [61] Y. Yang, P. Wu, X. Lin, Y. Liu, H. Bian, Y. Zhou, C. Gao, C. Shuai, System development, formability quality and microstructure evolution of selective laser-melted magnesium, Virtual Phys. Prototyp. 11 (2016) 173–181. doi:10.1080/17452759.2016.1210522.
    [62] S. Clijsters, T. Craeghs, S. Buls, K. Kempen, J.P. Kruth, In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system, Int. J. Adv. Manuf. Technol. 75 (2014) 1089-1101. doi:10.1007/s00170-014-6214-8.
    [63] E.R. Denlinger, J.C. Heigel, P. Michaleris, T.A. Palmer, Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys, J. Mater. Process. Technol. 215 (2015) 123-131. doi:10.1016/j.jmatprotec.2014.07.030.
    [64] Z. Wang, C. Jiang, P. Liu, W. Yang, Y. Zhao, M.F. Horstemeyer, L.Q. Chen, Z. Hu, L. Chen, Uncertainty quantification and reduction in metal additive manufacturing, Npj Comput. Mater. 6 (2020) 1-11. doi:10.1038/s41524-020-00444-x.
    [65] J. Ning, W. Wang, B. Zamorano, S.Y. Liang, Analytical modeling of lack-of-fusion porosity in metal additive manufacturing, Appl. Phys. A Mater. Sci. Process. 125 (2019) 1-11. doi:10.1007/s00339-019-3092-9.
    [66] M. Khanzadeh, S. Chowdhury, M.A. Tschopp, H.R. Doude, M. Marufuzzaman, L. Bian, In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes, IISE Trans. 51 (2019) 437–455. doi:10.1080/24725854.2017.1417656.
    [67] B. Zhang, S. Liu, Y.C. Shin, In-Process monitoring of porosity during laser additive manufacturing process, Addit. Manuf. 28 (2019) 497–505. doi:10.1016/j.addma.2019.05.030.
    [68] A.J. Dunbar, E.R. Denlinger, M.F. Gouge, P. Michaleris, Experimental validation of finite element modeling for laser powder bed fusion deformation, Addit. Manuf. 12 (2016) 108-120. doi:10.1016/j.addma.2016.08.003.
    [69] J.C. Heigel, P. Michaleris, E.W. Reutzel, Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti-6Al-4V, Addit. Manuf. 5 (2015) 9-19. doi:10.1016/j.addma.2014.10.003.
    [70] L. Mazzoleni, A.G. Demir, L. Caprio, M. Pacher, B. Previtali, Real-Time Observation of Melt Pool in Selective Laser Melting: Spatial, Temporal and Wavelength Resolution Criteria, IEEE Trans. Instrum. Meas. 9456 (2019) 1–1. doi:10.1109/TIM.2019.2912236.
    [71] B. Cheng, S. Price, J. Lydon, K. Cooper, On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing : Model Development and Validation, 136 (2014) 1–12. doi:10.1115/1.4028484.
    [72] J.C. Heigel, B.M. Lane, Measurement of the Melt Pool Length during Single Scan Tracks in a Commercial Laser Powder Bed Fusion Process, J. Manuf. Sci. Eng. Trans. ASME. 140 (2018) 1–7. doi:10.1115/1.4037571.
    [73] L.E. Criales, Y.M. Arısoy, B. Lane, S. Moylan, A. Donmez, T. Özel, Laser powder bed fusion of nickel alloy 625: Experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis, Int. J. Mach. Tools Manuf. 121 (2017) 22–36. doi:10.1016/j.ijmachtools.2017.03.004.
    [74] Y.S. Touloukian, D.P. Dewitt, Volume 7 : Thermal radiative properties-metallic elements and alloys. Thermophysical Properties of Matter-The TPRC Data Series-, 7.
    [75] S. Price, B. Cheng, J. Lydon, K. Cooper, K. Chou, On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Process Parameter Effects, J. Manuf. Sci. Eng. 136 (2014) 061019. doi:10.1115/1.4028485.
    [76] M. Doubenskaia, M. Pavlov, S. Grigoriev, I. Smurov, Definition of brightness temperature and restoration of true temperature in laser cladding using infrared camera, Surf. Coatings Technol. 220 (2013) 244–247. doi:10.1016/j.surfcoat.2012.10.044.
    [77] M. Luo, Y.C. Shin, Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding, Opt. Lasers Eng. 64 (2015) 59-70. doi:10.1016/j.optlaseng.2014.07.004.
    [78] C.S. Wu, J.Q. Gao, X.F. Liu, Y.H. Zhao, Vision-based measurement of weld pool geometry in constant-current gas tungsten arc welding, Proceedings of the institution of mechanical engineers, Part B: Journal of Engineering Manufacture 217 (2003) 879-892. doi:10.1243/09544050360673279.
    [79] C.H. Kim, D.C. Ahn, Coaxial monitoring of keyhole during Yb:YAG laser welding, Opt. Laser Technol. 44 (2012) 1874–1880. doi:10.1016/j.optlastec.2012.02.025.
    [80] I. Gibson, D.W. Rosen, B. Stucker, Additive Manufacturing Technologies (Vol. 17, p. 195). New York: Springer. doi:10.1007/978-1-4419-1120-9.
    [81] M. Markl, C. Körner, Multiscale Modeling of Powder Bed–Based Additive Manufacturing, Annu. Rev. Mater. Res. 46 (2016) 93–123. doi:10.1146/annurev-matsci-070115-032158.
    [82] D. Rosenthal, The Theory of Moving Sources of Heat and Its Application to Metal Treatments, Transactions of ASME 68 (1946) 849-866. doi:10.4236/eng.2011.32017.
    [83] V. Pavelic, R. Tanbakuchi, O.A. Uyehara, P.S. Myers, Experimental and computed temperature histories in gas tungsten-arc welding of thin plates, Weld. J. 48 (1969) 295-305.
    [84] J. Goldak, A. Chakravarti, M. Bibby, A new finite element model for welding heat sources, Metall. Trans. B. 15 (1984) 299–305. doi:10.1007/BF02667333.
    [85] M.F. Zäh, S. Lutzmann, Modelling and simulation of electron beam melting, Prod. Eng. 4 (2010) 15–23. doi:10.1007/s11740-009-0197-6.
    [86] J. Smith, F. Lin, W. Yan, W. Ge, F. Lin, W. Kam, Multiscale modeling of electron beam and substrate interaction : a new heat source model a new heat source model, Comput. Mech. 56 (2015) 265–276. doi:10.1007/s00466-015-1170-1.
    [87] T.R. Mahale, Electron beam melting of advanced materials and strucutres, North Carolina State University, 2019.
    [88] A. Klassen, A. Bauereiß, C. Körner, Modelling of electron beam absorption in complex geometries, J. Phys. D. Appl. Phys. 47 (2014) 065307. doi:10.1088/0022-3727/47/6/065307.
    [89] B.J. Keene, K.C. Mills, R.F. Brooks, Surface properties of liquid metals and their effects on weldability, Mater. Sci. Technol. 1 (1985) 559–567. doi:10.1179/mst.1985.1.7.559.
    [90] K.C. Mills, B.J. Keene, Factors affecting variable weld penetration, Int. Mater. Rev. 35 (1990) 185-216. doi:10.1179/095066090790323966.
    [91] S.W. Walsh DW, Technical Note: Autogenous GTA Weldments—Bead Geometry Variations Due to Minor Elements, Weld. J. WRC bullet (1984).
    [92] C. Kamath, B. El-Dasher, G.F. Gallegos, W.E. King, A. Sisto, Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W, Int. J. Adv. Manuf. Technol. 74 (2014) 65–78. doi:10.1007/s00170-014-5954-9.
    [93] Concept Laser Powder, (2018). https://www.concept-laser.de/contact_usa/materials/.
    [94] M. Jamshidinia, F. Kong, R. Kovacevic, Numerical Modeling of Heat Distribution in the Electron Beam Melting ® of Ti-6Al-4V, J. Manuf. Sci. Eng. 135 (2013) 061010. doi:10.1115/1.4025746.
    [95] W. Zhang, C.-H. Kim, T. DebRoy, Heat and fluid flow in complex joints during gas metal arc welding—Part I: Numerical model of fillet welding, J. Appl. Phys. 95 (2004) 5210-5219. doi:10.1063/1.1699485.
    [96] R. Rai, T. Palmer, J. Elmer, T. Debroy, Heat transfer and fluid flow during electron beam welding of 304L stainless steel alloy, Weld. J. 88 (2009) 54-61.
    [97] M. Courtois, M. Carin, P. Le Masson, S. Gaied, M. Balabane, A complete model of keyhole and melt pool dynamics to analyze instabilities and collapse during laser welding, J. Laser Appl. 26 (2014) 042001. doi:10.1186/1423-0127-21-46.
    [98] C. Kamath, Data mining and statistical inference in selective laser melting, Int. J. Adv. Manuf. Technol. 86 (2016) 1659–1677. doi:10.1007/s00170-015-8289-2.
    [99] A.F.H. Kaplan, Laser absorptivity on wavy molten metal surfaces: Categorization of different metals and wavelengths, J. Laser Appl. 26 (2014) 012007. doi:10.2351/1.4833936.
    [100] S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Mater. 108 (2016) 36-45. doi:10.1016/j.actamat.2016.02.014.
    [101] K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys, Woodhead Publishing Limited, Cambridge, UK, 2002.
    [102] W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, A.M. Rubenchik, Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing, J. Mater. Process. Technol. 214 (2014) 2915–2925. doi:10.1016/j.jmatprotec.2014.06.005.
    [103] H.C. Tran, Y.L. Lo, Systematic approach for determining optimal processing parameters to produce parts with high density in selective laser melting process, Int. J. Adv. Manuf. Technol. 105 (2019) 4443–4460. doi:10.1007/s00170-019-04517-0.
    [104] I. Yadroitsev, A. Gusarov, I. Yadroitsava, I. Smurov, Single track formation in selective laser melting of metal powders, J. Mater. Process. Technol. 210 (2010) 1624–1631. doi:10.1016/j.jmatprotec.2010.05.010.
    [105] Powder Range Brochure-Carpenter Additive, (2017). https://www.lpwtechnology.com/what-we-do/powderrange/.
    [106] S. Kou, Y.H. Wang, Weld Pool Convection and Its Effect, Weld. J. 65 (1986) 63-70.
    [107] W. Huang, H. Wang, T. Rinker, W. Tan, Investigation of metal mixing in laser keyhole welding of dissimilar metals, Mater. Des. 195 (2020) 109056. doi:10.1016/j.matdes.2020.109056.
    [108] TongTai Additive Manufacturing, (2018). http://www.tongtai.com.tw/en/.
    [109] A.B. Spierings, G. Levy, Comparison of density of stainless steel 316L parts produced with selective laser melting using different powder grades, In Proceedings of the Annual International Solid Freeform Fabrication Symposium (2009) 342-353.
    [110] K. Dai, X. Li, L. Shaw, Thermal Analysis of Laser-Densified Dental Porcelain Bodies: Modeling and Experiments, J. Heat Transfer. 126 (2004) 818-825. doi:10.1115/1.1795812.
    [111] EOS, EOS Powder Specifications, (2019). https://www.eos.info/en (accessed January 20, 2019).
    [112] Q.B. Nguyen, M.L.S. Nai, Z. Zhu, C.N. Sun, J. Wei, W. Zhou, Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing, Engineering. 3 (2017) 695-700. doi:10.1016/J.ENG.2017.05.012.
    [113] R. Glardon, N. Karapatis, V. Romano, Influence of Nd: YAG parameters on the selective laser sintering of metallic powders, CIRP Ann. - Manuf. Technol. 50 (2001) 133-136. doi:10.1016/S0007-8506(07)62088-5.
    [114] K. Shah, I.U. Haq, S.A. Shah, F.U. Khan, M.T. Khan, S. Khan, Experimental study of direct laser deposition of Ti-6Al-4V and Inconel 718 by using pulsed parameters, Sci. World J. (2014) 841549. doi:10.1155/2014/841549.
    [115] S. Krishnan, P.C. Nordine, Optical properties of liquid aluminum in the energy range 1.2-3.5 eV, Phys. Rev. B. 47 (1993) 11780. doi:10.1103/PhysRevB.47.11780.
    [116] S. Koric, B.G. Thomas, Thermo-mechanical models of steel solidification based on two elastic visco-plastic constitutive laws, J. Mater. Process. Technol. 197 (2008) 408-418. doi:10.1016/j.jmatprotec.2007.06.060.
    [117] N. Giesselmann, A. Rückert, M. Eickhoff, H. Pfeifer, J. Tewes, J. Klöwer, Coupling of Multiple Numerical Models to Simulate Electroslag Remelting Process for Alloy 718, ISIJ Int. 55 (2015) 1408–1415. doi:10.2355/isijinternational.55.1408.
    [118] Z. Guo, N. Saunders, A.P. Miodownik, J.P. Schillé, Modelling of materials properties and behaviour critical to casting simulation, Mater. Sci. Eng. A. 413 (2005) 465-469. doi:10.1016/j.msea.2005.09.036.
    [119] R.A. Overfelt, V. Sahai, Y.K. Ko, J.T. Berry, Porosity in Cast Equiaxed Alloy 718, In Proceedings of the TMS Meeting (189). doi:10.7449/1994/superalloys_1994_189_200.
    [120] R. Andreotta, L. Ladani, W. Brindley, Finite element simulation of laser additive melting and solidification of Inconel 718 with experimentally tested thermal properties, Finite Elem. Anal. Des. 135 (2017) 36–43. doi:10.1016/j.finel.2017.07.002.
    [121] M. Courtois, M. Carin, P. Le Masson, S. Gaied, M. Balabane, A complete model of keyhole and melt pool dynamics to analyze instabilities and collapse during laser welding, J. Laser Appl. 26 (2014) 042001. doi:10.1186/1423-0127-21-46.
    [122] K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys, Woodhead Publishing. 2010. doi:10.1533/9781845690144.
    [123] L.C. Wei, L.E. Ehrlich, M.J. Powell-Palm, C. Montgomery, J. Beuth, J.A. Malen, Thermal conductivity of metal powders for powder bed additive manufacturing, Addit. Manuf. 21 (2018) 201–208. doi:10.1016/j.addma.2018.02.002.
    [124] T.N. Le, Y.L. Lo, Effects of sulfur concentration and Marangoni convection on melt-pool formation in transition mode of selective laser melting process, Mater. Des. 179 (2019) 107866. doi:10.1016/j.matdes.2019.107866.
    [125] A. Kidess, S. Kenjereš, B.W. Righolt, C.R. Kleijn, Marangoni driven turbulence in high energy surface melting processes, Int. J. Therm. Sci. 104 (2016) 412-422. doi:10.1016/j.ijthermalsci.2016.01.015.
    [126] H.L. Wei, G.L. Knapp, T. Mukherjee, T. DebRoy, Three-dimensional grain growth during multi-layer printing of a nickel-based alloy Inconel 718, Addit. Manuf. 25 (2019) 448-459. doi:10.1016/j.addma.2018.11.028.
    [127] T.N. Le, M.H. Lee, Z.H. Lin, H.C. Tran, & Y.L. Lo, A vision-based in-situ monitoring system for melt-pool detection of laser powder bed fusion process, Journal of Manufacturing Processes. In press.
    [128] X. Wang, K. Chou, Microstructure simulations of Inconel 718 during selective laser melting using a phase field model, Int. J. Adv. Manuf. Technol. 100 (2019) 2147–2162. doi:10.1007/s00170-018-2814-z.
    [129] R.C. Gonzalez, R.E. Woods, S.L. Eddins, Digital Image Processing Using Matlab - Gonzalez Woods & Edd, Education. (2004). doi:10.1117/1.3115362.
    [130] T.M. Wischeropp, C. Emmelmann, M. Brandt, A. Pateras, Measurement of actual powder layer height and packing density in a single layer in selective laser melting, Addit. Manuf. 28 (2019) 176–183. doi:10.1016/j.addma.2019.04.019.
    [131] T.N. Le, Y.L. Lo, Z.H. Lin, Numerical simulation and experimental validation of melting and solidification process in selective laser melting of IN718 alloy, Addit. Manuf. 36 (2020) 101519. doi:10.1016/j.addma.2020.101519.
    [132] H.P. Zhu, Z.Y. Zhou, R.Y. Yang, A.B. Yu, Discrete particle simulation of particulate systems: Theoretical developments, Chem. Eng. Sci. 62 (2007) 3378-3396. doi:10.1016/j.ces.2006.12.089.
    [133] B. Chaudhuri, F.J. Muzzio, M.S. Tomassone, Modeling of heat transfer in granular flow in rotating vessels, Chem. Eng. Sci. 61 (2006) 6348–6360. doi:10.1016/j.ces.2006.05.034.
    [134] DEM_Solutions, EDEM 2 . 4 Theory Reference Guide, (2014) 19. https://www.edemsimulation.com/.
    [135] B. Lane, S. Moylan, E.P. Whitenton, L. Ma, Thermographic measurements of the commercial laser powder bed fusion process at NIST, Rapid Prototyp. J. 22 (2016) 778–787. doi:10.1108/RPJ-11-2015-0161.
    [136] H. Chen, Q. Wei, S. Wen, Z. Li, Y. Shi, Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method, Int. J. Mach. Tools Manuf. 123 (2017) 146–159. doi:10.1016/j.ijmachtools.2017.08.004.
    [137] A.B. Murphy, C.J. Arundelli, Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas, Plasma Chem. Plasma Process. 14 (1994) 451–490. doi:10.1007/BF01570207.
    [138] C. Zhao, N.D. Parab, X. Li, K. Fezzaa, W. Tan, A.D. Rollett, T. Sun, Critical instability at moving keyhole tip generates porosity in laser melting, Science (80-. ). 1086 (2020) 1080–1086.
    [139] U. Scipioni Bertoli, A.J. Wolfer, M.J. Matthews, J.P.R. Delplanque, J.M. Schoenung, On the limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting, Mater. Des. 113 (2017) 331–340. doi:10.1016/j.matdes.2016.10.037.
    [140] X. Liang, W. Dong, Q. Chen, A.C. To, On incorporating scanning strategy effects into the modified inherent strain modeling framework for laser powder bed fusion, Addit. Manuf. 37 (2020) 101648. doi:10.1016/j.addma.2020.101648.
    [141] S. Cooke, K. Ahmadi, S. Willerth, R. Herring, Metal additive manufacturing: Technology, metallurgy and modelling, J. Manuf. Process. 57 (2020) 978–1003. doi:10.1016/j.jmapro.2020.07.025.
    [142] Z.A. Young, Q. Guo, N.D. Parab, C. Zhao, M. Qu, L.I. Escano, K. Fezzaa, W. Everhart, T. Sun, L. Chen, Types of spatter and their features and formation mechanisms in laser powder bed fusion additive manufacturing process, Addit. Manuf. 36 (2020) 101438. doi:10.1016/j.addma.2020.101438.
    [143] T. Prater, N. Werkheiser, F. Ledbetter, D. Timucin, K. Wheeler, M. Snyder, 3D Printing in Zero G Technology Demonstration Mission: complete experimental results and summary of related material modeling efforts, Int. J. Adv. Manuf. Technol. 101 (2019) 391–417. doi:10.1007/s00170-018-2827-7.
    [144] J. Heikkila, O. Silven, A four-step camera calibration procedure with implicit image correction. In Proceedings of IEEE computer society conference on computer vision and pattern recognition (1997) 1106-1112. doi:10.1109/cvpr.1997.609468.
    [145] J. Weng, P. Coher, M. Herniou, Camera Calibration with Distortion Models and Accuracy Evaluation, IEEE Transactions on pattern analysis and machine intelligence 14 (1992) 965-980. doi:10.1109/34.159901.
    [146] H.W. Hsu, Y.L. Lo, M.H. Lee, Vision-based inspection system for cladding height measurement in Direct Energy Deposition (DED), Addit. Manuf. 27 (2019) 372-378. doi:10.1016/j.addma.2019.03.017.
    [147] M. Asselin, E. Toyserkani, M. Iravani-Tabrizipour, A. Khajepour, Development of trinocular CCD-based optical detector for real-time monitoring of laser cladding, In IEEE International Conference Mechatronics and Automation, 3 (2005) 1190-1196. doi:10.1109/icma.2005.1626722.
    [148] B. Cheng, J. Lydon, K. Cooper, V. Cole, P. Northrop, K. Chou, Melt pool sensing and size analysis in laser powder-bed metal additive manufacturing, J. Manuf. Process. 32 (2018) 744–753. doi:10.1016/j.jmapro.2018.04.002.
    [149] L. Mazzoleni, A.G. Demir, L. Caprio, M. Pacher, B. Previtali, Real-Time Observation of Melt Pool in Selective Laser Melting: Spatial, Temporal, and Wavelength Resolution Criteria, IEEE Trans. Instrum. Meas. 69 (2020) 1179-1190. doi:10.1109/TIM.2019.2912236.
    [150] S.A. Khairallah, A.A. Martin, J.R.I. Lee, G. Guss, N.P. Calta, J.A. Hammons, M.H. Nielsen, K. Chaput, E. Schwalbach, M.N. Shah, M.G. Chapman, T.M. Willey, A.M. Rubenchik, A.T. Anderson, Y.M. Wang, M.J. Matthews, W.E. King, Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing, Science 665 (2020) 660–665.
    [151] B. Cheng, J. Lydon, K. Cooper, V. Cole, P. Northrop, K. Chou, Infrared thermal imaging for melt pool analysis in SLM: a feasibility investigation, Virtual Phys. Prototyp. 13 (2018) 8–13. doi:10.1080/17452759.2017.1392685.
    [152] Y.Z. Di Wang, Wenhao Dou, Yuanhui Ou, Yongqiang Yang, Chaolin Tan, Characteristics of Droplet Spatter Behavior and Process-Correlated Mapping Model in Laser Powder Bed Fusion, J. Mater. Res. Technol. 184 (2020) 107229. doi:10.1016/j.jmrt.2021.02.043.
    [153] W. Yan, W. Ge, J. Smith, S. Lin, O.L. Kafka, F. Lin, W.K. Liu, Multi-scale modeling of electron beam melting of functionally graded materials, Acta Mater. 115 (2016) 403–412. doi:10.1016/j.actamat.2016.06.022.
    [154] R. Gauvin, G. L’Espérance, A Monte Carlo code to simulate the effect of fast secondary electrons on κAB factors and spatial resolution in the TEM, J. Microsc. 168 (1992) 153–167. doi:10.1111/j.1365-2818.1992.tb03258.x.
    [155] R. Shimizu, D. Ze-Jun, Monte Carlo modelling of electron-solid interactions, Reports Prog. Phys. 55 (1992) 487–531. doi:10.1088/0034-4885/55/4/002.
    [156] D. Drouin, P. Hovington, R. Gauvin, CASINO: A new monte carlo code in C language for electron beam interactions-part II: Tabulated values of the mott cross section, Scanning. 19 (2006) 20–28. doi:10.1002/sca.4950190103.
    [157] C. Körner, E. Attar, P. Heinl, Mesoscopic simulation of selective beam melting processes, J. Mater. Process. Technol. 211 (2011) 978–987. doi:10.1016/j.jmatprotec.2010.12.016.
    [158] Y. Shi, Y. Zhang, Simulation of random packing of spherical particles with different size distributions, Appl. Phys. A. 92 (2008) 621-626. doi:10.1115/IMECE2006-15271.
    [159] A. V. Gusarov, T. Laoui, L. Froyen, V.I. Titov, Contact thermal conductivity of a powder bed in selective laser sintering, Int. J. Heat Mass Transf. 46 (2003) 1103–1109. doi:10.1016/S0017-9310(02)00370-8.
    [160] G. Chahine, H. Atharifar, P. Smith, Design Optimization of a Customized Dental Implant Manufactured via Electron Beam Melting, Int. Solid Free. Fabr. Symp. (2009) 631–640.
    [161] K. Firm, R. Boyer, G. Welsch, Materials Properties Handbook: Titanium Alloys, ASM international. 1994. doi:http://www.sciencedirect.com/science/article/pii/S0045782504000313.
    [162] S.M. Gaytan, L.E. Murr, F. Medina, E. Martinez, M.I. Lopez, R.B. Wicker, Advanced metal powder based manufacturing of complex components by electron beam melting, Mater. Technol. 24 (2009) 180–190. doi:10.1179/106678509X12475882446133.

    無法下載圖示 校內:2026-08-03公開
    校外:2026-08-03公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE