簡易檢索 / 詳目顯示

研究生: 洪翊修
Xiu, Hong Yi
論文名稱: 金屬-絕緣層-金屬 高選擇比二極體對於三維陣列新興記憶體之應用
High On-off Ratio MIM diodes for 3D emerging memory applications
指導教授: 盧達生
Lu, Darsen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 86
中文關鍵詞: 金屬-絕緣層-金屬二極體高選擇比三維陣列新興記憶體
外文關鍵詞: MIM diode, High On-off ratio, 3D emerging memory
相關次數: 點閱:133下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討金屬-絕緣層-金屬(M-I-M)結構之二極體元件,藉由調變絕緣層之材料及厚度,達到不同物理傳導機制來產生導通電流。元件在無塵室中製作以確保最佳品質,並使用物理沉積方式堆疊製作,相較於一般品質較好的多晶矽二極體,不需要經過高溫製程,更適合於三維陣列新興記憶體之整合應用,本研究探討如何提升二極體開關選擇比,且對於不同材料進行物理傳導機制之分析,更進一步萃取實驗實際之功函數差、能障高度、電子親和力。

    The purpose of this study is to explore metal-insulator-metal (MIM) diodes structures by modulating the material and thickness of the insulation layer to achieve different physical conduction mechanisms and generate on-state current.
    The devices use a physical deposition process and are made in clean room to ensure the best quality. Compared with high quality poly-silicon diodes that do not require high-temperature processes, the proposed device is suitable for the integration of emerging memory in three-dimensional arrays.
    In this research, we focus on how to increase the on-off current ratio in an attempt to analyze the physical conduction mechanism of different materials. Finally, we further extract the actual work function differences, energy barrier height, and electron affinity.

    Contents 摘要 i Abstract ii Acknowledgement iii Contents iv Figure captions vi Table captions xi Chapter 1 1 Introduction 1 1-1 Emerging Non-volatile memory 2 1-1-1 Magnetoresistive random access memory (MRAM) 3 1-1-2 Phase Change Random Access Memory (PCRAM) 4 1-1-3 Resistive random Access memory (RRAM) 5 1-2 Research motivation 7 Chapter 2 9 Background theory 9 2-1 MIM diode operating theory 9 2-2 MIM diode qualified 14 2-2-1 Turn on voltage 14 2-2-2 I on / I off Ratio 14 2-3 Barrier height estimation from F-N tunneling 15 2-4 Memory selector specification 15 2-5 Plasma charging damage mechanisms 17 Chapter 3 18 Experimental process 18 3-1 Experimental architecture 18 3-1-1 Experiment on upper and bottom electrodes 19 3-1-2 Experiment on switching layer 19 3-2 Mask layout design 19 3-3 Introduction to equipment and measurement 23 3-3-1 Co-Sputtering deposition system 23 3-3-2 Plasma-enhanced chemical vapor deposition 24 3-3-3 E-beam evaporator 24 3-3-4 Atomic Layer Chemical Vapor Deposition System 25 3-3-5 Scanning electron microscope 25 3-3-6 Transmission electron microscopy 26 3-3-7 Energy-dispersive X-ray spectroscopy 27 3-3-8 Alpha-Step Profilometer 27 3-4 Material growth and Device fabrication 29 Chapter 4 35 Results and Discussion 35 4-1 Experiment list 35 4-1-1 Experiment 1 35 4-1-2 Experiment 2 36 4-1-3 Experiment 3 36 4-2 EDS Analysis 37 4-2-1 TiN 37 4-2-2 TiN-TiO2-Pt 40 4-2-3 TiN-HfO2-Pt 41 4-2-4 TiN-Al2O3-Pt 42 4-3 TEM Analysis 43 4-3-1 TiN-TiO2-Pt 43 4-3-2 TiN-HfO2-Pt 44 4-3-3 TiN-Al2O3-Pt 45 4-3 IV and JV characteristics 46 4-3-1 HfO2 46 4-3-2 Al2O3 50 4-3-3 TiO2 55 4-4 I on / I off ratio 61 4-4-1 HfO2 61 4-4-2 Al2O3 61 4-4-3 TiO2 62 4-5 Conduction mechanism analysis 63 4-5-1 Analysis: FN tunneling behavior for Al2O3 63 4-5-2 Analysis: Poole-Frenkel Behavior for HfO2 69 4-5-3 Analysis: Schottky Emission Behavior for TiO2 72 4-6 Device area with electrical characteristics 73 4-7 Lift-off process 77 4-8 Conclusion 81 4-9 Future work 82 4-10 Question 83 References 84

    [1]李元道, “Development and the Challenges of the New Non-volatile Memory”, NANO COMMUNICATION 21卷 No. 3
    [2] Yu, Shimeng, and Pai-Yu Chen. "Emerging memory technologies: recent trends and prospects." IEEE Solid-State Circuits Magazine 8.2 (2016): 43-56.
    [3] M. Chin et al., “Planar metal–insulator–metal diodes based on the Nb/Nb2O5/X material system”, J. of Vacuum Science and Tech. B, 31, 051204 (2013).
    [4] N. Alimardani, E. W. Cowell III, J. F. Wager, and J. F. Conley Jr., “Impact of electrode roughness on metal-insulator-metal tunnel diodes with atomic layer deposited Al2O3 tunnel barriers”, J. of Vac. Sci. Technology, A 30(1), (2012).
    [5] J. J. Huang et al., “Transition of stable rectification to resistive-switching in Ti / TiO2 / Pt oxide diode”, Appl. Phys. Lett., 96, 262901 (2010).
    [6] Lim, Ee Wah, and Razali Ismail. "Conduction mechanism of valence change resistive switching memory: a survey." Electronics 4.3 (2015): 586-613.
    [7] Cowell III, E. William, et al. "Barrier height estimation of asymmetric metal-insulator-metal tunneling diodes." Journal of Applied Physics 114.21 (2013): 213703.
    [8] Chen, Yi-Chou, et al. "An access-transistor-free (0T/1R) non-volatile resistance random access memory (RRAM) using a novel threshold switching, self-rectifying chalcogenide device." Electron Devices Meeting, 2003. IEDM'03 Technical Digest. IEEE International. IEEE, 2003.
    [9] Li, Haitong, et al. "Write disturb analyses on half-selected cells of cross-point RRAM arrays." Reliability Physics Symposium, 2014 IEEE International. IEEE, 2014.
    [10] Reimbold, Gilles, and T. Poiroux. "Plasma charging damage mechanisms and impact on new technologies." Microelectronics Reliability 41.7 (2001): 959-965.
    [11] Shima, Hisashi, et al. "Control of resistance switching voltages in rectifying Pt∕ Ti O x∕ Pt trilayer." Applied Physics Letters 92.4 (2008): 043510. [12] Lee, Heng-Yuan, et al. "Low-power switching of nonvolatile resistive memory using hafnium oxide." Japanese journal of applied physics 46.4S (2007): 2175.
    [13] Wu, Yi, Byoungil Lee, and H-S. Philip Wong. "$hbox {Al} _ {2}hbox {O} _ {3} $-Based RRAM Using Atomic Layer Deposition (ALD) With 1-$muhbox {A} $ RESET Current." IEEE electron device letters 31.12 (2010): 1449-1451.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE