簡易檢索 / 詳目顯示

研究生: 曾湘涵
Tseng, Hsiang-Han
論文名稱: 探討利用薄膜過濾法製備具可撓性之可溶性高分子微針貼片
Investigation of membrane filtration for fabrication of flexible, dissolvable polymer microneedle patch
指導教授: 莊怡哲
Juang, Yi-Je
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 72
中文關鍵詞: 可溶性高分子微針抽氣過濾法
外文關鍵詞: filtration, dissolving microneedles
相關次數: 點閱:61下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,經皮藥物輸送成為相當受人矚目的給藥方式,此方法具有以下優勢:可以使藥物無須經過腸胃道的消化分解以及肝臟的初步分解,維持藥物品質,非侵入式的藥物傳送可降低感染風險,其使用方便,給藥次數低,可提高患者的配合度。在各種不同經皮藥物貼片的方法中,可溶性高分子微針的特色及優勢在於其具有生物相容性,不會因肌肉收縮而有像金屬微針斷裂破碎的情況,提供足夠的機械強度及安全性,並可選擇不同的高分子控制藥物釋放的速率。本研究是藉由微過濾的方式製作可溶性的高分子微針貼片,我們做出具有類似金字塔狀微結構陣列之PDMS模具,將模具放在濾紙上,並滴上聚乙烯吡咯烷酮(PVP)之高分子溶液,開始真空抽氣,探討影響微針成形的因素,包括濾紙孔徑大小、高分子濃度、抽氣時間及分子量大小,並討論高分子堆積的高度對於微過濾的時間所成的線性關係;也觀察高分子微針在組成豬皮成分的明膠固化物中,其溶解形貌與濃度之變化,套入質傳方程式找出其理論之數值,進行討論,以及測試高分子微針在豬皮穿刺中之深度與微針之機械強度。實驗結果顯示,我們能在一小時內做出高分子微針貼片,微針成形堆積的高度符合濾餅過濾的機制,而使用抽氣過濾法製備出的微針和一般方法所製備的微針機械強度無異。

    In this study, we proposed and demonstrated that the dissolvable and flexible polymer MNs patch can be fabricated by microfiltration. The polydimethylsiloxane (PDMS) mold with funnel-like cavities was first created, which was placed on top of a filter paper. A droplet of polyvinylpyrrolidone (PVP) solution was dispensed on the mold, followed by applying vacuum. Different parameters such as solution concentrations, filtration time, molecular weight of the polymer, pore size of the membrane were discussed. It was found that PVP microneedles can be fabricated by filtration method within 1 hr. In addition, the MNs as fabricated have sufficient mechanical strength to penetrate the porcine skin with the penetration depth around 250 µm. Dissolution of the PVP microneedles in 10 wt% gelatin was also monitored and the distribution of R6G inside gelatin can be described by Fick’s 2nd law.

    中文摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 圖目錄 X 第一章 緒論 1 1.1前言 1 1.2研究動機與方法 1 第二章 文獻回顧 2 2.1經皮藥物輸送 2 2.2微針陣列製備 7 2.2.1微針陣列種類與設計 7 2.2.2實心微針陣列製備 9 2.2.2.1矽基材微針 9 2.2.2.2金屬微針 14 2.2.2.3陶瓷微針 16 2.2.2.4高分子微針 17 2.2.2.5空心微針製備 30 2.3過濾 34 2.3.1過濾之原理與基本方程式[44] 34 2.4穿刺模擬實驗 36 第三章 實驗材料與方法 40 3.1以抽氣過濾法製備高分子微針與圓柱 40 3.1.1實驗材料與藥品 40 3.1.2實驗儀器與設備 41 3.1.3實驗方法與流程 41 3.1.3.1微針負向模具製備 41 3.1.3.2高分子微針製備 42 3.1.3.3壓克力圓柱製備 42 3.1.3.4二次翻模製備圓柱負向模具 43 3.1.3.5高分子圓柱製備 43 3.2使用光學相干斷層掃描測定穿刺深度 44 3.3使用應力拉伸機測試機械強度 44 3.4利用明膠模擬豬皮進行穿刺實驗 44 3.4.1實驗材料與藥品 44 3.4.2實驗儀器與設備 44 3.4.3實驗方法與流程 45 3.4.3.1明膠之配製 45 3.4.3.2穿刺之流程 45 第四章 高分子微針陣列製作與探討 46 4.1以抽氣過濾法製備高分子微針 46 4.2影響微針成形的因素 47 4.2.1.濾紙孔徑大小 47 4.2.2過濾時間 48 4.2.3高分子濃度 51 4.2.4分子量大小 51 4.2.5顛倒PDMS模進行抽氣 53 4.3微針性質探討 54 4.3.1豬皮穿刺結果(in vitro insertion test) 54 4.3.2應力測試 54 4.3.3明膠穿刺實驗(觀察微針溶解) 56 第五章 結論 64 第六章 未來工作與建議 65 第七章 參考文獻 66 附錄 71

    [1] S. Bystrova, and R. Luttge, “Micromolding for ceramic microneedle arrays,” Microelectronic Engineering, vol. 88, no. 8, pp. 1681-1684, 2011.
    [2] K. van der Maaden, W. Jiskoot, and J. Bouwstra, “Microneedle technologies for (trans) dermal drug and vaccine delivery,” Journal of controlled release, vol. 161, no. 2, pp. 645-655, 2012.
    [3] Y. Lv et al., “Modeling of transdermal drug delivery with a microneedle array,” Journal of Micromechanics and Microengineering, vol. 16, no. 11, pp. 2492, 2006.
    [4] K. Subramanyan et al., “Advances in the materials science of skin: a composite structure with multiple functions,” MRS bulletin, vol. 32, no. 10, pp. 770-778, 2007.
    [5] N. Wilke et al., “Process optimization and characterization of silicon microneedles fabricated by wet etch technology,” Microelectronics Journal, vol. 36, no. 7, pp. 650-656, 2005.
    [6] M. Verhoeven et al., “Applying ceramic nanoporous microneedle arrays as a transport interface in egg plants and an ex-vivo human skin model,” Microelectronic engineering, vol. 98, pp. 659-662, 2012.
    [7] T.-M. Tuan-Mahmood et al., “Microneedles for intradermal and transdermal drug delivery,” European Journal of Pharmaceutical Sciences, vol. 50, no. 5, pp. 623-637, 2013.
    [8] F. Verbaan et al., “Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method,” Journal of Controlled Release, vol. 128, no. 1, pp. 80-88, 2008.
    [9] K. Lee et al., “Drawing lithography: three‐dimensional fabrication of an ultrahigh‐aspect‐ratio microneedle,” Advanced Materials, vol. 22, no. 4, pp. 483-486, 2010.
    [10] R. Abdolvand, and F. Ayazi, “An advanced reactive ion etching process for very high aspect-ratio sub-micron wide trenches in silicon,” Sensors and Actuators A: Physical, vol. 144, no. 1, pp. 109-116, 2008.
    [11] R. Vecchione et al., “Electro‐Drawn Drug‐Loaded Biodegradable Polymer Microneedles as a Viable Route to Hypodermic Injection,” Advanced Functional Materials, vol. 24, no. 23, pp. 3515-3523, 2014.
    [12] A. A. Hamzah et al., “Optimization of HNA etching parameters to produce high aspect ratio solid silicon microneedles,” Journal of Micromechanics and Microengineering, vol. 22, no. 9, pp. 095017, 2012.
    [13] H. Jansen et al., “The black silicon method. VIII. A study of the performance of etching silicon using SF 6/O 2-based chemistry with cryogenical wafer cooling and a high density ICP source,” Microelectronics Journal, vol. 32, no. 9, pp. 769-777, 2001.
    [14] J. A. Matriano et al., “Macroflux® microprojection array patch technology: a new and efficient approach for intracutaneous immunization,” Pharmaceutical research, vol. 19, no. 1, pp. 63-70, 2002.
    [15] Y. Shahzad et al., “Breaching the skin barrier through temperature modulations,” Journal of Controlled Release, vol. 202, pp. 1-13, 2015.
    [16] J. J. Escobar-Chávez et al., Nanocarrier systems for transdermal drug delivery: INTECH Open Access Publisher, 2012.
    [17] M. R. Prausnitz, and R. Langer, “Transdermal drug delivery,” Nature biotechnology, vol. 26, no. 11, pp. 1261-1268, 2008.
    [18] K. S. Paudel et al., “Challenges and opportunities in dermal/transdermal delivery,” Therapeutic delivery, vol. 1, no. 1, pp. 109-131, 2010.
    [19] S. Henry et al., “Microfabricated microneedles: a novel approach to transdermal drug delivery,” Journal of pharmaceutical sciences, vol. 87, no. 8, pp. 922-925, 1998.
    [20] J.-H. Park, M. G. Allen, and M. R. Prausnitz, “Polymer microneedles for controlled-release drug delivery,” Pharmaceutical research, vol. 23, no. 5, pp. 1008-1019, 2006.
    [21] S.-J. Paik et al., “In-plane single-crystal-silicon microneedles for minimally invasive microfluid systems,” Sensors and Actuators A: Physical, vol. 114, no. 2, pp. 276-284, 2004.
    [22] H. Jansen et al., “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” Journal of Micromechanics and Microengineering, vol. 5, no. 2, pp. 115, 1995.
    [23] Q. Chen et al., “Isotropic etch for SiO 2 microcantilever release with ICP system,” Microelectronic Engineering, vol. 85, no. 3, pp. 500-507, 2008.
    [24] M. Shikida et al., “Non-photolithographic pattern transfer for fabricating arrayed three-dimensional microstructures by chemical anisotropic etching,” Sensors and Actuators A: Physical, vol. 116, no. 2, pp. 264-271, 2004.
    [25] P. Yih, V. Saxena, and A. Steckl, “A review of SiC reactive ion etching in fluorinated plasmas,” physica status solidi (b), vol. 202, no. 1, pp. 605-642, 1997.
    [26] J. D. Hamilton, “Fabrication and analysis of injection molded plastic microneedle arrays,” 2011.
    [27] W. Martanto et al., “Transdermal delivery of insulin using microneedles in vivo,” Pharmaceutical research, vol. 21, no. 6, pp. 947-952, 2004.
    [28] S.-O. Choi et al., "3-D patterned microstructures using inclined UV exposure and metal transfer micromolding."
    [29] J. D. Kim et al., “Droplet-born air blowing: Novel dissolving microneedle fabrication,” Journal of controlled release, vol. 170, no. 3, pp. 430-436, 2013.
    [30] M. Kim et al., “The Troy Microneedle: A Rapidly Separating, Dissolving Microneedle Formed by Cyclic Contact and Drying on the Pillar (CCDP),” PloS one, vol. 10, no. 8, pp. e0136513, 2015.
    [31] H. Yang et al., “Rapid implantation of dissolving microneedles on an electrospun pillar array,” Biomaterials, vol. 64, pp. 70-77, 2015.
    [32] C. Pan et al., “Magnetization-induced self-assembly method: Micro-needle array fabrication,” Journal of Materials Processing Technology, vol. 227, pp. 251-258, 2016.
    [33] X. You, J. J. Pak, and J.-h. Chang, "Rapidly dissolving silk protein microneedles for transdermal drug delivery." pp. 144-147.
    [34] M. Han et al., “A novel fabrication process for out-of-plane microneedle sheets of biocompatible polymer,” Journal of Micromechanics and Microengineering, vol. 17, no. 6, pp. 1184, 2007.
    [35] S. P. Sullivan, N. Murthy, and M. R. Prausnitz, “Minimally invasive protein delivery with rapidly dissolving polymer microneedles,” Advanced materials, vol. 20, no. 5, pp. 933-938, 2008.
    [36] L. Y. Chu, and M. R. Prausnitz, “Separable arrowhead microneedles,” Journal of controlled release, vol. 149, no. 3, pp. 242-249, 2011.
    [37] M.-C. Chen et al., “Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination,” Biomaterials, vol. 34, no. 12, pp. 3077-3086, 2013.
    [38] J. Lee et al., “Rapid and repeatable fabrication of high A/R silk fibroin microneedles using thermally-drawn micromolds,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 94, pp. 11-19, 2015.
    [39] R. E. Lutton et al., “A novel scalable manufacturing process for the production of hydrogel-forming microneedle arrays,” International journal of pharmaceutics, vol. 494, no. 1, pp. 417-429, 2015.
    [40] B. Stoeber, and D. Liepmann, “Arrays of hollow out-of-plane microneedles for drug delivery,” Microelectromechanical Systems, Journal of, vol. 14, no. 3, pp. 472-479, 2005.
    [41] N. Baron et al., “Investigations of development process of high hollow beveled microneedles using a combination of ICP RIE and dicing saw,” Microsystem Technologies, vol. 14, no. 9-11, pp. 1475-1480, 2008.
    [42] S. P. Davis et al., “Hollow metal microneedles for insulin delivery to diabetic rats,” Biomedical Engineering, IEEE Transactions on, vol. 52, no. 5, pp. 909-915, 2005.
    [43] M. Zhu et al., “Silica needle template fabrication of metal hollow microneedle arrays,” Journal of Micromechanics and Microengineering, vol. 19, no. 11, pp. 115010, 2009.
    [44] 呂維明、莊清榮, 化工單元操作(一)流體力學與流體操作: 高立圖書有限公司, 民97.12.
    [45] T. Podder et al., “Robotic needle insertion in soft material phantoms: an evaluation of the property of commonly used materials,” Change, vol. 50, pp. 1.93.
    [46] E. Larrañeta et al., “A facile system to evaluate in vitro drug release from dissolving microneedle arrays,” International journal of pharmaceutics, vol. 497, no. 1-2, pp. 62-69, 2015.
    [47] E. Larrañeta et al., “A proposed model membrane and test method for microneedle insertion studies,” International journal of pharmaceutics, vol. 472, no. 1-2, pp. 65-73, 2014.
    [48] D. Zhang, D. B. Das, and C. D. Rielly, “Microneedle Assisted Micro‐Particle Delivery from Gene Guns: Experiments Using Skin‐Mimicking Agarose Gel,” Journal of pharmaceutical sciences, vol. 103, no. 2, pp. 613-627, 2014.
    [49] R. F. Donnelly et al., “Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution,” Journal of controlled release, vol. 147, no. 3, pp. 333-341, 2010.
    [50] Y. Ma, and H. S. Gill, “Coating Solid Dispersions on Microneedles via a Molten Dip‐Coating Method: Development and In Vitro Evaluation for Transdermal Delivery of a Water‐Insoluble Drug,” Journal of pharmaceutical sciences, vol. 103, no. 11, pp. 3621-3630, 2014.
    [51] R. Zhang et al., “Modeling of drug delivery into tissues with a microneedle array using mixture theory,” Biomechanics and modeling in mechanobiology, vol. 9, no. 1, pp. 77-86, 2010.
    [52] I.-C. Lee et al., “Fabrication of a novel partially dissolving polymer microneedle patch for transdermal drug delivery,” Journal of Materials Chemistry B, vol. 3, no. 2, pp. 276-285, 2015.
    [53] J. R. Welty et al., “Fundamentals of Momentum, Heat, and Mass Transfer ”, pp. 497-499.
    [54] K. Samprovalaki, P. Robbins, and P. Fryer, “Investigation of the diffusion of dyes in agar gels,” Journal of food engineering, vol. 111, no. 4, pp. 537-545, 2012.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE