| 研究生: |
張豪軒 Chang, Hao-Hsuan |
|---|---|
| 論文名稱: |
以賽局理論為基礎制定間接廠際熱整合方案的數學規劃模式 Mathematical Programming Models for Synthesizing Indirect Inter-Plant Heat Integration Schemes Based on Game Theory |
| 指導教授: |
張珏庭
Chang, Chuei-Tin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 逐步熱整合 、間接廠際熱交換 、奈許平衡式 、協商因子 |
| 外文關鍵詞: | Sequential heat integration, Indirect heat integration, Nash equilibrium equations, Negotiation power |
| 相關次數: | 點閱:59 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去廠際熱整合的研究大多利用直接熱整合的方式且偏向於整體能源的最小化,由於可能會使各廠獲利不平均與熱交換網路過於龐大複雜,致使整體可行性降低、無法實行。所以本研究發展透過中間媒介(熱油與水蒸氣/冷卻水)進行廠際間接式熱交換,在藉由賽局理論去協商廠間之競合關係,使得廠際熱整合計畫實行率達到最高。
在本研究利用賽局理論中協商因子與奈許平衡限制式整合在逐步最佳化的數學規劃模式中,將傳統三步驟的逐步熱整合延展成四步驟,第一步驟是計算所有工廠整體最少公用流體花費,此時利用熱油為媒介的策略會得到各廠間的熱油熱容流率與循環溫度;第二步驟是在維持第一步驟所得整體公用流體用量,加入奈許平衡式與協商因子去計算廠際熱交易價格;第三步驟是在維持最少公用流體花費及奈許平衡限制下的熱交換量決定最少廠內及廠際最佳配對及對應熱交換量,而利用熱油為媒介的策略廠際配對點之定義為各廠熱油熱交換點;第四步驟在利用協商因子去建構達成最佳配對的最大平均化成本節省幅度的熱交換網路。
A systematic profit-allocation methodology has been developed in this study on the basis of game theory for realistic total-site indirect heat integration. The two types of intermediate fluid are used to exchange the inter-plant heat are hot oil and steam/cooling water. These two indirect heat integration methodologies are modified from the traditional sequential heat integration methodology to the four consecutive design steps. Four consecutive design steps are proposed in this work to determine (1) the minimum total utility cost, (2) the fairest trading prices of all inter-plant heat flows under the constraints of Nash equilibrium and the negotiation power and also the lower bounds determined in step 1, (3) the minimum number of heat-transfer units and the corresponding matches under the constraints of inter-plant heat-flow patterns determined in step 2, and (4) the best total-site heat exchanger network under the constraints of optimal matches determined in step 3.
Compare to the direct heat integration methodology and the indirect heat integration methodology proposed in this study, the former can save more on utility cost saving but save less on capital cost saving since the former can offer the more opportunities of inter-plant hear exchange and achieve the total energy saving but the HEN is relatively complicated. Consequently, these two indirect heat can improve inter-plant feasibility through the more safe and simple HEN and fair profit based on game theory.
Anita, K. K. Heat Integration between Two Biodiesel Processes Using a Simple Method. Energy & Fuels, 22, 1972-1979, 2008.
Audet, C., Belhaiza, S. & Hansen, P. Enumeration of All the Exterme Equilibria in Game Theory: Bimatrix and Polymatrix Games. Journal of Optimization Theory and Applications, 129, 349-372, 2006.
Bagajewicz, M. J. & Rodera, H. Multiple Plant Heat Integration in a Total Site. AIChE Journal, 48, 2255-2270, 2002.
Bagajewicz, M. J. On the use of heat pimps in total site heat integration. Computers and Chemical Engineering, 27, 1707-1719, 2003.
Bandyopadhyay, S., Varghese, J. & Bansal, V. Targeting for cogeneration potential through total site integration. Applied Thermal Engineering, 30, 6-14, 2010.
Chew, I. M. L., Tan, R., Foo, D. C. Y. & Chiu, A. S. F. Game Theory Approach to the Analysis of Inter-plant Water Integration in an Eco-Industrial Park. Journal of Cleaner Production, 17, 1611-1619, 2009.
Cheng, S. L., Chang, C. T. & Jiang, D. A game-theory based optimization strategy to configure inter-plant heat integration schemes. Chemical Engineering Science, 118, 60-73, 2014.
Floudas, C. A., Ciric, A. R. & Grossmann, I. E. Automatic synthesis of optimum heat exchanger network configurations. American Institute of Chemical Engineers Journal, 32, 276-290, 1986.
Goršek, A., Glavič, P. & Bogataj, M. Design of the optimal total site heat recovery system using SSSP approach. Chemical Engineering and Processing, 45, 372-382, 2006.
Miller, D. A. & Zucker, S. W. Copositive-plis Lemke algorithm solves polymatrix games. Operations Research Letters, 10, 285-290, 1991.
Nash, J. F. Equilibrium Points in n-Person Games. Proceedings of the National Academy of Science of the United States of America, 36, 48-49, 1950.
Nash, J. F. Non-Cooperative Games. The Annals of Mathematics, 54, 286-295, 1951.
Papoulias, S. A. & Grossmann, I. E. A structural optimization approach in process synthesis – II. Heat recovery networks. Computers and Chemical Engineering, 7, 707-721, 1983.
Quintas, L. G. A Note on Polymatrix Games. International Journal of Game Theory, 18, 261-272, 1989.
Sorin, M. & Hammache, A. A new thermodynamic model for shaftwork targeting on total site. Applied Thermal Engineering, 25, 961-972, 2005.
Torres, A. I., & Stephanopoulos, G. Design of Multi‐Actor Distributed Processing Systems: A Game‐Theoretical Approach. AIChE Journal, 2016.
von Neumann, J. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100, 295-399, 1928.
Wang, Y., Chang, C. & Feng, X. Indirect heat integration across plants using hot water circles. Chinese Journal of Chemical Engineering, 23, 992-997, 2015.
Yue, D. & You, Fengqi. Fair Profit Allocation in Supply Chain Optimization with Transfer Price and Revenue Sharing: MINLP Model and Algorithm for Cellulosic Biofuel Supply Chains, AIChE Journal, 60, 3211-3229, 2014.