簡易檢索 / 詳目顯示

研究生: 王詠昇
Wang, Yung-Sheng
論文名稱: 由二維聲子晶體板及具週期柱狀突出物構成之機械超常材料之研究
Mechanical metamaterial based on the two-dimensional phononic crystal plates with periodic stubs
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 114
中文關鍵詞: 負泊松比膨脹材料能隙現象缺陷模態局部共振
外文關鍵詞: Negative Poisson’s ratio, Auxetic materials, Band-gap, Defect mode, Locally resonant
相關次數: 點閱:167下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 手性及星形蜂巢狀結構是具有負泊松比特性的週期性結構,亦可稱之為膨脹材料,先前的研究通常為透過有限元素軟體與布洛赫定理分析此類型週期結構之波傳行為,入射一彈性波,其中包含縱波、橫波及其耦合現象等,觀察其不同物理現象,進而發現在某些頻段下的彈性波在此週期結構中無法傳遞,產生能隙的現象,使特定角度與頻率之彈性波無法通過聲子晶體。本文首先計算二次手性、環形二次手性、環形正方蜂巢、反四手手性及星形蜂巢狀結構五種結構之等效材料參數,討論其泊松比及楊氏係數之變化,並將此參數實際代入聲子晶體,討論負泊松比對於能隙之影響,分析由二維聲子晶體基板與具週期柱狀突出物組合成之聲子晶體,參考文獻中原先使用矽當基板材料,本文則用先前計算出之等效材料參數將其替換後,觀察能隙現象之改變情形,並分別改變聲子晶體結構之幾何參數、替換柱子之材料與形狀,同樣比較這些改變對於能隙中心頻率及頻寬之影響。
    在應用方面,本文利用此結構設計出含缺陷之聲子晶體與局部共振型聲子晶體。含缺陷聲子晶體方面,藉由有限元素軟體配合超晶胞法計算其色散關係,並分析其缺陷模態與品質因子;局部共振型聲子晶體中,則藉由加入橡膠層作為軟材料,並且使用不同的配置方式,藉由調變其填充比、高度等,讓聲子晶體之完全能隙有不同的工作頻率範圍,可用於設計濾波器或聲波開關等裝置,同時透過COMSOL Multiphysics®有限元素軟體分析進行全波模擬,證明這些設計之可行性。

    Chiral and star-shaped honeycomb structures can be considered as periodic phononic structures. These structures can be design to have an effective negative Poisson’s ratio. The materials which have negative Poisson’s ratio are known as auxetic materials. The elastic wave propagations within the periodic honeycomb structures are investigated by using the finite element method and Bloch’s theorem.
    In the present thesis, we calculate first the effective Poisson’s ratio and Young’s modulus of tetrachiral structures with quadratic ligament, anti-tetrachiral structures and star-shaped honeycomb structures by finite element static analysis. By changing the geometric parameters, we can design the honeycomb structures which can have effective negative Poisson’s ratio.
    The dispersion analysis of two-dimensional phononic crystal plates with periodic stubs are analyzed. By changing different effective material parameters, we investigate the evolution of the complete band-gap for different negative Poisson’s ratio. We find that the first band-gap of tetrachiral structures with quadratic ligament is the lowest. By changing the geometric parameters of the phononic crystal, material and shape of the stubs, respectively, the influence on the center frequency and bandwidth of the first band-gap is also compared. We find that different height of stubs, plate thickness and lattice constants will have different effect on band-gap. And the larger the density of stub’s material is, the lower center frequency and narrower bandwidth we will get.
    In the application, we use these structures to design the phononic crystals with defects and locally resonant. In the case of phononic crystal with defects, we analyze its defect modes and quality factor, and find that the higher the resonance frequency is, the better quality factor we will get. In locally resonant phononic crystal, the rubber layer is added as soft material. By changing its filling ratio or height, the complete band-gap will have different operating frequency ranges. The larger the filling ratio is, the higher the center frequency of the first band-gap we will find. But the band-gap frequency does not decrease as the height of rubber layer increases. These features can be used to design different kinds of multi-channel filters. We also demonstrate the feasibility of these designs by full wave simulations of COMSOL Multiphysics®.

    中文摘要 I 英文摘要 II 誌謝 X 目錄 XI 表目錄 XIV 圖目錄 XV 符號 XX 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 類比於光子晶體之聲子晶體 3 1-2-2 聲子晶體能隙現象 4 1-2-3 孔隙材料概述 6 1-2-4 負泊松比材料 9 1-2-5 含缺陷之聲子晶體 12 1-2-6 局部共振型聲子晶體 13 1-3 本文架構 14 第二章 數值方法 15 2-1 前言 15 2-2 固態物理學與彈性力學基本定義 15 2-2-1 倒晶格空間 15 2-2-2 布里淵區(Brillouin Zones) 19 2-2-3 布洛赫定理(Bloch theorem) 21 2-2-4 彈性力學基本方程式 22 2-2-5 彈性波方程式 23 2-3 有限元素法 25 2-3-1 基本概念 25 2-3-2 有限元素法之分析過程 26 2-3-3有限元素法之簡易解題過程 29 2-3-4 COMSOL有限元素分析軟體 30 第三章 各種手性與蜂巢狀結構之靜態分析 32 3-1 前言 32 3-2 機械性質之分析 32 3-2-1 二次曲線手性結構 32 3-2-2 環形二次曲線手性結構 34 3-2-3 環形正方蜂巢狀結構 36 3-2-4 反四手手性結構 37 3-2-5 星形蜂巢狀結構 38 3-3 二次曲線手性結構之楊氏係數與泊松比分析 39 3-4 各種環形曲線手性結構與星形蜂巢狀結構之楊氏係數與泊松比分析 41 3-4-1 環形二次曲線手性結構 41 3-4-2 環形正方蜂巢狀結構 43 3-4-3 反四手手性結構 45 3-4-4 星形蜂巢狀結構 47 3-4-5 三種具環形結構之泊松比與楊氏係數比較 49 3-5 小結 50 第四章 不同負泊松比結構等效參數與幾何參數對能隙之影響 51 4-1 前言 51 4-2二維基板與柱狀突出物構成之聲子晶體 51 4-2-1色散曲線之計算 51 4-3改變材料參數對於結構色散之分析 56 4-3-1不同手性與環形結構等效參數之基板對於能隙之影響 56 4-3-2不同星形角度蜂巢狀結構等效參數之基板對於能隙之影響 58 4-4改變幾何參數對於整體結構低頻能隙影響之分析 60 4-4-1改變圓柱高度對於能隙之影響 60 4-4-2改變板厚對於能隙之影響 64 4-4-3改變晶格常數(填充比)對於能隙之影響 66 4-4-4將柱子以不同材料替換對於能隙之影響 68 4-4-5將柱子以不同形狀替換對於能隙之影響 70 第五章 柱狀突出聲子晶體之應用 77 5-1 前言 77 5-2聲子晶體之共振腔 77 5-2-1具缺陷之聲子晶體 78 5-2-2含缺陷聲子晶體以不同形狀柱子代替之差異 83 5-2-3三種含缺陷聲子晶體共振腔之品質因子比較 89 5-3局部共振型聲子晶體 90 5-3-1局部共振聲子晶體之色散關係 91 5-3-2共振模態之分析 92 5-3-3不同基板材料對於共振能隙之影響 97 5-3-4多通道濾波器 98 5-3-5另一種配置之局部共振型聲子晶體(Ⅰ) 100 5-3-6另一種配置之局部共振型聲子晶體(Ⅱ) 103 5-3-7不同高度之橡膠層與完全能隙之關係 105 第六章 綜合結論與未來展望 106 6-1 綜合結論 106 6-2 未來展望 107 參考文獻 109

    [1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics”, Physical Review Letters, Vol. 58, No. 20, pp. 2059-2062. (1987).
    [2] S. John, “Strong localization of photons in certain disordered dielectric super-lattices”, Physical Review Letters, Vol. 58, No. 23, pp. 2486-2489. (1987).
    [3] L. Brillouin, “Wave propagation in periodic structures”, 2nd ed. Dover, New York (1953).
    [4] L. Cremer, and H. O. Leilich, “Zur theorie der Biegekettenleiter (On theory of flexural periodic systms)”, Archiv der Elektrischen Ubertragung, Vol. 7, pp. 261-265. (1953).
    [5] E. Yablonovitch, and T. J. Gmitter, “Photonic band structure: The face-centered-cubic case”, Physical Review Letters, Vol. 63, No. 18, pp. 1950-1953. (1989).
    [6] M. Sigalas, and E. Economou, “Elastic and acoustic wave band structure”, Journal of sound and vibration, Vol. 158, No. 2, pp. 377-382. (1992).
    [7] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites”, Physical Review Letters, Vol. 71, No. 13, pp. 2022-2025. (1993).
    [8] M. S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski, and B. Djafari-Rouhani, “Theory of acoustic band structure of periodic elastic composites”, Physical Review B, Vol. 49, No. 4, pp. 2313-2322. (1994).
    [9] M. S. Kushwaha, and P. Halevi, “Band-gap engineering in periodic elastic composites”, Applied Physics Letters, Vol. 64, No. 9, pp. 1085-1087. (1994).
    [10] M. S. Kushwaha, “Classical band structure of periodic elastic composites”, International Journal of Modern Physics B, Vol. 10, No. 9, pp. 977-1094. (1996).
    [11] A. S. Phani, J. Woodhouse, and N. A. Fleck, “Wave propagation in two-dimensional periodic lattices”, Journal of the Acoustical Society of America, Vol. 119, No. 4, pp. 1995–2005. (2006).
    [12] M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, “Two-dimensional photonic band structures”, Optics Communications, Vol. 80, pp. 199-204. (1991).
    [13] M. Plihal, and A. A. Maradudin, “Photonic band structures of Two-dimensional system: The triangular lattice”, Physical Review B, Vol. 44, pp. 8565-8571. (1991).
    [14] X. Wang, X. G. Zhang, Q. Yu, and B. N. Harmon, “Multiple-scattering theory for electromagnetic wave”, Physical Review B, Vol. 47, pp. 4161-4167. (1993).
    [15] P. M. Bell, J. B. Pendry, M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures”, Computing Physics Communications, Vol. 85, pp. 306-322. (1995).
    [16] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method. (Norwood, MA: Artech House, 1995).
    [17] A. Bousfia, E. H. El Boudouti, B. Djafari-Rouhani, D. Bria, A. Nougaoui, and V. R. Velasco, “Omnidirectional phononic reflection and selective transmission in one-dimensional acoustic layered structures”, Surface Science, Vol. 482-485, Part 2, pp. 1175-1180. (2001).
    [18] B. Manzanares-Martínez, J. Sánchez-Dehesa, A. Håkansson, F. Cervera, and F. Ramos-Mendieta, “Experimental evidence of omnidirectional elastic bandgap in finite one-dimensional phononic systems”, Applied Physics Letters, Vol. 85, No. 1, pp. 154-156. (2004).
    [19] M. Ruzzene, and A. Baz, “Control of wave propagation in periodic composite rods using shape memory inserts”, Journal of Vibration and Acoustics, Vol. 122, pp. 151-159. (2000).
    [20] M. Ruzzene, and A. M. Baz, in SPIE's 7th Annual International Symposium on Smart Structures and Materials. (International Society for Optics and Photonics, (2000)), pp. 389-407.
    [21] T. Chen, M. Ruzzene, and A. Baz, “Control of wave propagation in composite rods using shape memory inserts: theory and experiments”, Journal of Vibration and Control, Vol. 6, pp. 1065-1069. (2000).
    [22] J. Y. Yeh, “Control analysis of the tunable Phononic crystal with electrorheological material”, Physica B, Vol. 400, pp. 137-144. (2007).
    [23] W. P. Yang, and L. W. Chen, “The tunable acoustic band gaps of the two-dimensional phononic crystals with dielectric elastomer cylindrical actuator”, Smart Materials and Structures, Vol. 17, No. 1, 015011. (2008).
    [24] R. Martinezsala, J. Sancho, J. V. Sanchez, V. Gomez, J. Llinares, and F. Meseguer, “Sound-Attenuation by Sculpture”, Nature, Vol. 378, No. 6554, pp. 241-241. (1995).
    [25] E. L. Thomas, T. Gorishnyy, and M. Maldovan, “Phononics: Colloidal crystals go hypersonic”, Nature Materals, Vol. 5, No. 10, pp. 773-774. (2006).
    [26] J. Wen, G. Wang, D. Yu, H. Zhao, and Y. Liu, “Theoretical and experimental investigation of flexural wave propagation in straight beams with periodic structures: Application to a vibration isolation structure”, Journal of Applied Physics, Vol. 97, No. 11, 114907. (2005).
    [27] Z. G. Huang, “Silicon-based filters, resonators and acoustic channels with phononic crystal structures”, Journal of Physics D: Applied Physics, Vol. 44, No. 24, 245406. (2011).
    [28] F. Wu, Z. Hou, Z. Liu, and Y. Liu, “Point defect states in two-dimensional phononic crystals”, Physics Letters A, Vol. 292, No. 3, pp. 198-202. (2001).
    [29] T. Miyashita, in Ultrasonics Symposium, 2004 IEEE. (IEEE, (2004)), Vol. 2, pp. 946-949.
    [30] X. Zhang, Z. Liu, Y. Liu, and F. Wu, “Defect states in 2D acoustic band-gap materials with bend-shaped linear defects”, Solid State Communications, Vol. 130, No. 1-2, pp. 67-71. (2004).
    [31] Y. Pennec, B. Djafari-Rouhani, H. Larabi, J. O. Vasseur, and A. C. Hladky-Hennion, “Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate”, Physical Review B, Vol. 78, 104105. (2008).
    [32] Y. Li, T. Chen, X. Wang, Y. Xi, and Q. Liang, “Enlargement of locally resonant sonic band gap by using composite plate-type acoustic metamaterial”, Physics Letters A, Vol. 379, No. 5, pp. 412-416. (2015).
    [33] Z. Zhang, and X. K. Han, “A new hybrid phononic crystal in low frequencies”, Physics Letters A, Vol. 380, No. 45, pp. 3766-3772. (2016).
    [34] T. T. Wu, Z. G. Huang, T. C. Tsai, and T. C. Wu, “Evidence of complete band gap and resonances in a plate with periodic stubbed surface”, Applied Physics Letters, Vol. 93, No. 11, 111902. (2008).
    [35] K. Yu, T. Chen, and X. Wang, “Band gaps in the low-frequency range based on the two-dimensional phononic crystal plates composed of rubber matrix with periodic steel stubs”, Physica B, Vol. 416, pp. 12-16. (2013).
    [36] S. Li, T. Chen, X. Wang, Y. Li, and W. Chen, “Expansion of lower-frequency locally resonant band gaps using a double-sided stubbed composite phononic crystals plate with composite stubs”, Physics Letters A, Vol. 380, No. 25-26, pp. 2167-2172. (2016).
    [37] P. Jiang, “Low-frequency band gap and defect state characteristics in a multi-stub phononic crystal plate with slit structure”, Journal of Applied Physics, Vol. 121, No. 1, 015106. (2017).
    [38] A. K. Noor, M. S. Anderson, and W. H. Greene, “Continuum models for beam- and plate like lattice structures”, AIAA Journal, Vol. 16, pp. 1219-1228. (1978).
    [39] 劉培生,多孔材料引論 清華大學出版,2004.
    [40] L. T. Gibson, M. F. Ashby, G. S. Schajer, and C. I. Robertson, “The mechanics of two-dimensional cellular materials”, Proceedings of the Royal Society of London. Series A, Vol. 382, No. 1782, pp. 25-42. (1982).
    [41] L. J. Gibson, “Modelling the mechanical behavior of cellular materials”, Material Science and Engineering, Vol. A110, pp. 1-36. (1989).
    [42] S. Gonella, A. C. To, and W. K. Liu, “Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting”, Journal of the Mechanics and Physics of Solid, Vol. 57, pp. 621-633. (2009).
    [43] B. K. Bertoldi, P. M. Reis, S. Willshaw, and T. Mullin, “Negative Poisson's ratio behavior induced by an elastic instability”, Advanced Materials, Vol. 22, pp. 361-366. (2010).
    [44] Y. C. Fung, “Foundations of solid mechanics”, Prentice-Hall, New Jersey. (1965).
    [45] A. E. H. Love, “A treatise on the mathematical theory of elasticity”, 4th edition, Cambridge University Press, Cambridge, Vol. 1. (1892).
    [46] R. H. Baughman, J. M. Schaklette, A. A. Zakhidov, and S. Stafström. “Negative Poisson’s ratios as a common feature of cubic metals”, Nature, Vol. 392, pp. 362-365. (1998).
    [47] R. F. Almgren, “An isotropic three-dimensional structure with Poisson’s ratio = −1”, Journal of Elasticity, Vol. 15, No. 4, pp. 427–430. (1985).
    [48] R. S. Lakes, “Foam structures with a negative Poisson’s ratio”, Science, Vol. 235, pp. 1038–1040. (1987).
    [49] K. E. Evans, “Auxetic polymers: a new range of materials”, Endeavour, Vol. 15, No. 4, pp. 170–174. (1991).
    [50] T. C. Lim, “Auxetic Materials and Structures”, Engineering Materials. (2015).
    [51] D. Prall, and R. S. Lakes, “Properties of chiral honeycomb with a Poisson’s ratio of -1”, International Journal of Mechanical Sciences, Vol. 39, No. 3, pp. 305-314. (1997).
    [52] Y. Sun, and N. M. Pugno, “In plane stiffness of multifunctional hierarchical honeycombs with negative Poisson's ratio sub-structures”, Composite Structures, Vol. 106, pp. 681-689. (2013).
    [53] P. S. Theocaris, G. E. Stavroulakis, and P. D. Panagiotopoulos, “Negative Poisson’s ratios in composites with star-shaped inclusions: a numerical homogenization approach”, Archive of Applied Mechanics, Vol. 68, pp. 274-286. (1997).
    [54] J. N. Grima, R. Gatt, A. Alderson, and K. E. Evans, “On the potential of connected stars as auxetic systems”, Molecular Simulation, Vol. 31, No. 13, pp. 925-935. (2005).
    [55] M. Ruzzene, F. Scarpa, and F. Soranna, “Wave beaming effects in two-dimensional cellular structure”, Smart Materials and Structures, Vol, 12, No. 3, pp. 363-372. (2003).
    [56] S. Gonella, and M. Ruzzene, “Analysis of in-plane wave propagation in hexagonal and re-entrant lattices”, Journal of Sound and Vibration, Vol. 312, No. 1–2, pp. 125–139. (2008).
    [57] M. Ruzzene, and F. Scarpa, “Control of wave propagation in sandwich beams with auxetic core”, Journal of Intelligent Material Systems and Structures, Vol. 14, No. 7, pp. 363-374. (2003).
    [58] A. Spadoni, M. Ruzzene, S. Gonella, and F. Scarpa, “Phononic properties of hexagonal chiral lattices”, Wave Motion, Vol. 46, No. 7, pp. 435–450. (2009).
    [59] F. Scarpa, and P. G. Malischewsky, “Some new considerations concerning the Rayleigh-wave velocity in auxetic materials”, Physica Status Solidi B, Vol. 245, No. 3, pp. 578-583. (2008).
    [60] J. Meng, Z. Deng, K. Zhang, X. Xu, and F. Wen, “Band gap analysis of star-shaped honeycombs with varied Poisson’s ratio”, Smart Materials and Structures, Vol. 24, No. 9, 095011. (2015).
    [61] W. Jiang, D. Feng, D. Xu, B. Xiong, and Y. Wang, “Experimental investigation of energy localization in line-defect resonator based on silicon locally resonant phononic crystal”, Applied Physics Letters, Vol. 109, 161102. (2016).
    [62] K. J. Lee, J. W. Wu, and K. Kim, “Defect modes in a one-dimensional”, Optical Materials Express, Vol. 4, No. 12, pp. 2542-2550. (2014).
    [63] Y. J. Cao, and Y. Z. Li, “Symmetry and coupling efficiency of the defect modes in two-dimensional phononic crystals”, Modern Physics Letter B, Vol. 21, No. 22, pp. 1479-1488. (2007).
    [64] F. Li, J. Liu, and Y. Wu, “The investigation of point defect modes of phononic crystal for high Q resonance”, Journal of Applied Physics, Vol. 109, No. 12, 124907. (2011).
    [65] Vincent Laude, “Phononic Crystals”, De Gruyter Studies in Mathematical Physics, Vol. 26. (2015).
    [66] M. M. Sigalas, “Elastic wave band gaps and defect states in two-dimensional composites”, The Journal of the Acoustical Society of America, Vol. 101, No. 3, pp. 1256-1261. (1997).
    [67] J. Chen, and J. C. Cheng, “Dynamics of elastic waves in two-dimensional phononic crystals with chaotic defect”, Applied Physics Letters, Vol. 91, No. 12, 121902. (2007).
    [68] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, amd P. Sheng, “Locally Resonant Sonic Materials”, Science, Vol. 289, No. 5485, pp. 1734-1736. (2000).
    [69] G. Wang, D. Yu, J. Wen, Y. Liu, and X. Wen, “One-dimensional phononic crystals with locally resonant structures”, Physics Letters A, Vol. 327, No. 5-6, pp. 512-521. (2004).
    [70] G. Wang, L. H. Shao, Y. Z. Liu, and J. H. Wen, “Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals”, Chinese Physics, Vol. 15, No. 8, pp. 1843-1848. (2006).
    [71] M. Hirsekorn, and P. P. Delsanto, “Elastic wave propagation in locally resonant sonic material_Comparison between local interaction simulation approach and model analysis”, Journal of Applied Physics, Vol. 99, No. 12, 124912. (2006).
    [72] Z. Cheng, Z. Shi, Y. L. Mo, and H. Xiang, “Locally resonant periodic structures with low-frequency band gaps”, Journal of Applied Physics, Vol. 114, No. 3, 033532. (2013).
    [73] J. N. Reddy, “An introduction to the finite element method 3rd edition”, McGraw-Hill, New York. (2006).
    [74] Y. J. Chen, F. Scarpa, Y. J. Liu, and J. S. Leng, “Elasticity of anti-tetrachiral anisotropic lattices”, International Journal of Solids and Structures, Vol. 50, No. 6, pp. 996-1004. (2013).

    下載圖示 校內:2018-08-01公開
    校外:2018-08-01公開
    QR CODE