簡易檢索 / 詳目顯示

研究生: 侯志龍
Hou, Jhih-Long
論文名稱: 微放電加工製程誤差與機台空間誤差之判認與補償
Identification and compensation of process errors and machine spatial errors in micro-EDM
指導教授: 王俊志
Wang, Jiunn-Jyh Junz
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 110
中文關鍵詞: 和方根法機台空間誤差模型精微製造系統微放電加工標準件空間誤差補償技術
外文關鍵詞: Micro/Meso Manufacturing System, Artifact, Micro-EDM, RSS, Machine Spatial Error Model, Spatial Error Compensation Technology
相關次數: 點閱:79下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功地在微放電加工機上分離標準件上的誤差源,以和方根法快速評估製程誤差之分佈與變動,接著建構創新的機台空間誤差模型,並已經實驗證實其可行性。
    首先從辨識電極直徑的尺寸誤差與製程誤差變異研究結果得知,和方根法可分離兩者的尺寸與放電間隙變異,取得批次電極放電加工下的製程誤差。接著用於分離標準件之誤差,結果顯示製程誤差與機台位置誤差也可有效被分離及判認。而對於不同機台構型,本文提出一通用於三軸工具機之機台空間誤差模型,輸入標準件分離後的機台位置誤差結果,經由最小平方法運算機台誤差源,可求得空間誤差地圖。最後,本研究藉此研究步驟建立之空間位置誤差在加工機X-Y平面進行誤差補償。
    由實際補償後結果得知,以標準件法分離誤差源後,以和方根法判認製程誤差與變異,再依機台空間誤差模型施行補償,加工誤差可由+/-20μm降低到+/-4μm。故本文所提出的研究方法為一有效且適用於精微製造系統之空間誤差補償技術。

    This thesis in an attempt to estimate the spread of errors of the artifact, process errors and machine spatial errors is identified and compensated by using Root Sum Square (RSS) method and spatial error compensation model in micro-EDM process, respectively.
    Given a batch of electrodes, a new RSS method is proposed in EDM to identify two sources of the errors: the dimensional variation of the electrodes and the process over-cut error and its variation.It is further shown that the machine position error can also be identified form the artifact. In addition, for different machine configurations, a general spatial error compensation model for three-axis machines is proposed to estimate machine spatial error .
    The results of compensation were showed that the total error can be greatly reduced from +/-20μm to around +/-4μm. Therefore, this investigation provides an effective spatial error compensation technology suitable for Micro/Meso Manufacturing System.

    摘要: i Abstract: ii 誌謝 iii 目錄: iv 表目錄 vii 圖目錄 viii 符號 xi 第一章 緒論 1 1.1 前言 1 1.2 研究背景與文獻回顧 3 1.2.1製程誤差: 3 1.2.2機台誤差: 8 1.3 研究動機與目的 17 1.4 研究範疇與論文架構 20 第二章 誤差的合併與分離 22 2.1 製造系統之誤差源 22 2.2 誤差源之合成與分離 25 2.3 判認EDM製程誤差 29 2.4 幾何誤差的建模與補償 31 2.5 實驗流程 33 第三章 微放電加工製程誤差辨別 35 3.1 EDM製程誤差分析 35 3.2 製程誤差與放電參數關係之建立 38 3.2.1 實驗設置 38 3.2.2 實驗結果與討論 43 3.2.3 分析與結論 50 3.3 和方根法(RSS method) 52 3.3.1 實驗目的 52 3.3.2 實驗規劃 52 3.3.3 實驗設置 55 3.3.4實驗結果與討論 57 3.3.5 確認性實驗與討論 61 3.4 和方根法預估製程變異之結論 65 第四章 機台誤差補償 66 4.1 機台誤差分析 66 4.2 新的機台空間誤差補償數學模式建立 66 4.3 誤差多項式與最小平方法計算 85 4.4 機台誤差補償模型模擬 88 4.5 實驗設置 93 4.6結果與討論 96 4.7 機台誤差補償結論 101 第五章 結論與建議 102 5.1 結論 102 5.2建議 103 參考文獻 104 自述: 110

    [1] Belforte, G., Bona, B., Canuto, E., Donati, F., Ferraris, F. and Gorini, I., Coordinate measuring machines and machine tool selfcalibration and error correction, Annals of the CIRP, Vol. 36/1, pp. 359-364, 1987.
    [2] Sartori, S. and Zhang, G. X., Geometric error measurement and compen -sation of machines, Annals of the CIRP, Vol. 44/2, pp. 599-609, 1995.
    [3] Kunzmann, H., Trapet, E. and Waldele, F., A uniform concept for calibration, acceptance test and periodic inspection of coordinate measuring machines using reference object, Annals of the CIRP, Vol. 39/1, pp. 561–564, 1990.
    [4] Kunzman, H., On testing for three coordinate measuring machines with kinematics reference standards, Annals of the CIRP, pp. 465–468, 1983.
    [5] Elman, C. Jameson, Electrical Discharge Machining, SME Publication, 2001.
    [6] Guitrau, E. B., The EDM Handbook, Hanser Gardner Publications, 1997.
    [7] Ho, K. H. and Newman, S.T., State of the art electrical discharge machining (EDM), Int. J. Machine Tools Manuf. 43 (2003) 1287–1300.
    [8] 董光雄, 放電加工, 復文書局, 1988
    [9] Marafona, J. and Wykes, C., A new method of optimising material removal rate using EDM with copper–tungsten electrodes, Int. J. Machine Tools Manuf. 40 (2000) 153–164.
    [10] Amorim, F. L. and Weingaertner, W. L., The influence of generator actuation mode and process parameters on the performance of finish EDM of a tool steel, J. Mater. Process. Technol. 166 (2005) 411-416.
    [11] Sanchez, J. A., Lopez de Lacalle, L.N., Lamikiz, A. and Bravo, U., Dimensional accuracy optimization of multi-stage planetary EDM, Int. J. Machine Tools Manuf. 42 (2002) 1643-1648.
    [12] Florussen, G. H. J., Delbressine, F. L. M., van de Molengraft, M. J. G. and Schellekens, P. H. J., Assessing geometrical errors of multi-axis machines by three-dimensional length measurements, Measurement 30 (2001),. 241-255.
    [13] Definition and Evaluation of Accuracy and Repeatability for Numerically Controlled Machine Tools, NMTBA.
    [14] Statistical testing of the operation and positional accuracy of machine tools, VDI/DGQ 3441, 1976.
    [15] Test code for machine tools part 2: determination of accuracy and repeat -ability of positioning numerically controlled axes, ISO-230-2, 1997.
    [16] 萬德安著, “激光基準高精度測量技術”, 北京國防工業出版社, 北京, 大陸, 1999.
    [17] Schultschik, R., The components of the volumetric accuracy, Annals of the CIRP,. Vol.25, No.1, pp223-228, 1977.
    [18] Donmez, M. A. and Whitehouse, D. J., A general methodology for machine tool accuracy enhancement by error compensation, ASPE J. of Precision Engineering, 8(4): 187-196, 1986.
    [19] Soons, J. A., Theuws, F. C. and Schellekens, P. H., Modeling the errors of multi-axis machines: A general methodology. Precision Engineering, 14(1):5-19, 1992.
    [20] Kiridena, V. S. B. and Ferreira, P. M., Kinematic modeling of quasistatic errors of three-axis machining centers [J]. International Journal of Machine Tools & Manufacture,34(1):85-100, 1994.
    [21] Ferreira, P. M. and Liu, C. R., An Analytical Quadratic Model for the Geometric Error of a Machine Tool. Journal of Manufacturing System,5(1):51-62, 1986.
    [22] Ferrira, P M and Liu, C. R., A contribution to the analysis and compensation of the geometric error of a machining center[J]. Annals of the CIRP, 35 (1) :259-262, 1986.
    [23] Kiridena, V. and Ferreira, P. M., Mapping the effects of positioning errors on the volumetric accuracy of five-axis CNC machine tools, Int J Machine Tools Manufacture, 33: 417-437, 1993.
    [24] Test code for machine tools part 4: circular tests for numerically controlled machine tools, ISO-230-4, 1996.
    [25] Test code for machine tools part 6: diagonal displacement test, ISO 230-6, 1999.
    [26] Methods for performance evaluation of computer numerically controlled machine centers, ASME B5.54, 2005.
    [27] Kunzmann, H. and Waldele, F., “On testing coordinate measuring machines (CMM) with kinematic reference standards (KSR) ”, Annals of the CIRP, 32/1, pp. 465–468, 1983.
    [28] Knapp, W., Test of the three-dimensional uncertainty of machine tools and measuring machine and its relation to the machine errors. Annal of the CIRP, 32/1, pp.459-464, 1983
    [29] Wang, Charles,鐘振周,葉賜旭,梁瑞芳,精密機械空間誤差量測與補償,全華科技圖書股份有限公司,2002.
    [30] Wang, C. P., A Laser Vector Measurement Technique for the Determination and Compensation of Volumetric Position Errors, Part Ⅰ:Basic Theory, Rev. Sci. Instrum. Vol. 71 (10), pp.3933-3937, 2000.
    [31] Janeczko, J., Griffin, B. and Wang, Charles, Laser vector measurement technique for the determination and compensation of volumetric positioning errors. Part 2:Experimental verification , Rev. Sci. Instrum. Vol. 71 (10), pp. 3938-3941, 2000.
    [32] Wang, C., Chung, C. C., Yeh, S. S. and Liang, J. F., “Lean Manufacturing: High Accuracy Part Production By Low Accuracy Machines With Volumetric Calibration And Compensation”, Japan-USA Symposium on Flexible Automation (JUSFA), Hiroshima, Japan, 2002.
    [33] Chung, C. C., Yeh, S. S., Liang, J. F., Chou, L., Su, J. T. and Wang, C., “Volumetric Position Error Measurement and Compensation for a Large Aspect Ratio Machine”, National Conference of Standards Laboratories (NCSL), San Diego, USA, 2002.
    [34] Chung, C. C., Yeh, S. S., Liang, J. F., Lai, Y. S. and Wang, C., “Advanced Volumetric Error Compensation Technique for a Large Aspect Ratio Machine”, IEEE/ASME International Conference on Advanced Manufacturing Technologies and Education (AMTE), HsinChu, Taiwan, 2002.
    [35] Chung, C. C., Yeh, S. S., Liang, J. F., Lai, Y. S. and Wang, C., “Advanced Volumetric Positioning Error Measurement and Compensation for Large Aspect Ratio Machine Tools”, IEEE/ASME International Conference on Advanced Manufacturing Technologies and Education (AMTE), HsinChu, Taiwan, 2002.
    [36] Chung, C. C., Yeh, S. S., Liang, J. F., Chou, L., Su, J. T. and Wang, C., “Volumetric Positioning Accuracies of an AWEA Machine”, American Society for Precision Engineering (ASPE),USA, 2002.
    [37] Chung, C. C., Yeh, S. S., Liang, J. F., Chou, L., Su, J. T. and Wang, C., “A Laser Vector Technique for the Measurement of Static Positioning Errors & Compensation”, International Dimensional Workshop (IDW), USA, 2002.
    [38] Florussen, G. H. J., Delbressine, F. L. M., van de Molengraft, M.J.G. and Schellekens, P.H.J., Assessing geometrical errors of multi-axis machines by three-dimensional length measurements, Measurement 30 (2001),. 241-255.
    [39] Yang, S. H. and Kim, K. H. Error analysis and compensation for the volumetric errors of a vertical machining centre using a hemispherical helix ball bar test, Int J Adv Manuf Technol, 23, pp. 495–500, 2004.
    [40] Zharg, G. and Hocken, R., A displacement method for machine geometry calibration, Annal of the CIRP, 37/1, pp.515-518, 1988.
    [41] Tsai, Y. Y. and Masuzawa, T., An index to evaluate the wear resistance of the electrode in micro-EDM, J. Mater. Process. Technol. 149 (2004) 304–309
    [42] Kunieda, M., Kowaguchi, W. and Takita, T., Reverse simulation of Die- sinking EDM, Ann. CIRP 48 (1) (1999) 115-118.
    [43] Yu, Z. Y., Masuzawa, T. and Fujino, M.,Micro-EDM for three- dimensional cavities –development of uniform wear method-, Ann. CIRP 47 (1) (1998) 169-172.
    [44] Masuzawa, T., Tsukamoto, J. and Fujino, I.I.S., M., Drilling of Deep Microholes by EDM, Ann. CIRP 38 (1) (1989) 195-198.
    [45] Wang, J. J., Hou, J. L., and Hsu, F. C., A RSS Method for Estimating Hole Dimension Error in a Batch Micro-EDM Process, International Manufacturing Science And Engineering Conference(MSEC), 2007.

    下載圖示 校內:2009-08-08公開
    校外:2009-08-08公開
    QR CODE