簡易檢索 / 詳目顯示

研究生: 戴健軒
Tai, Jian-Shiuan
論文名稱: 細胞分離及細胞核萃取之自動化晶片平台
Automatic Biochip Platform for Cell Separation and Nucleus Collection
指導教授: 李國賓
Lee, Gwo-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 72
中文關鍵詞: 微機電系統介電泳力S型蠕動式微幫浦微氣動閥門
外文關鍵詞: MEMS, dielectrophoretic force, s-shape pneumatic micropump, micro-pneumatic valve
相關次數: 點閱:105下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究成功地利用微機電製程技術,設計並製作出一個整合氣壓式微流體元件及利用介電泳力操控細胞之細胞分離晶片,本晶片中具有微流體傳輸、細胞分類及篩選之功能。透過微流體元件將可使分離流程自動化,介電泳力可用於操控不同之細胞對象、並同時具有操作電壓低之優點,操控之細胞本身不需帶電且不會對細胞造成任何不可逆之傷害而產生胞解(Cell Lysis)。
      在晶片製作部分,本研究利用微細加工方式,符合批次製造並免除耗時之製程,非常適合細胞晶片封裝。在玻璃基材上製作產生介電泳力之微電極陣列,並以彈性聚合物聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)製作微管道及薄膜結構,藉由施加壓縮氣體致使薄膜致動。本研究中微氣動閥門(Micro-pneumatic Valve)可阻絕微流體之流動,提高細胞分離效率避免交互污染問題,而藉由控制電路造成S型蠕動式微幫浦(S-shape Pneumatic Micropump)作動,驅使微流體樣本之傳輸。最後,本研究導入人類肺癌細胞株(Human Lung Carcinoma Cells)做為測試,藉由本研究之細胞分離晶片成功地將活、死細胞分離,並經由測試得到活細胞之分離效能為84%、死細胞之分離效能為81%。

     This study reports a new biochip for cell separation and collection utilizing dielectrophoresis forces on micro-fluidic systems composing micro pneumatic pumps and valves. By using MEMS technology, micro devices could be integrated into the biochip to achieve the functions of cell transportation and sorting. With the advantages of low operation voltage, dielectrophoresis forces operated under a specific voltage and frequency could be used to manipulate cells without damaging cell samples.
     A fabrication process based on MEMS technology was developed in this study. Firstly, the dielectrophoresis electrode array was fabricated on glass substrates. Then micro flow channels, micropumps and microvalves made of PDMS (Polydimethylsiloxane) were bonded on the glass. Dielectrophoresis forces were applied on the cell samples by the electrode structures to achieve cell separation. By integrating the micro pneumatic pumps and valves, the samples with different kinds of cells could be transported in the micro channel, and moved to specific chambers after sorting by the dielectrophoresis electrode array. Experimental results showed that viable and non-viable cells (human lung cancer cell, A549) could be successfully separated and collected using the developed chip. The efficiencies of separation for the viable and non-viable cells are 84% and 81%, respectively.

    中文摘要 i Abstract ii 誌謝 iv 目錄 vi 表目錄 ix 圖目錄 x 符號說明 xviii 第一章 緒論 1-1 前言 1 1-2 生醫微機電系統簡介 2 1-3 微流體生物晶片 3 1-4 研究動機與目的 4 1-5 文獻回顧 6 1-5-1 介電泳力文獻回顧 6 1-5-2 微幫浦及微閥門文獻回顧 10 1-6 論文架構 11 第二章 理論基礎理論 2-1 介電泳效應 16 2-1-1電中性粒子之介電泳效應 16 2-1-2細胞懸浮液所受之介電泳力 21 2-2 氣動驅動式微幫浦及微閥門設計原理 25 第三章 細胞晶片之設計及製作 3-1 材料選擇 28 3-2 光罩製作 29 3-3 晶片製程 30 3-3-1 晶片清洗 30 3-3-2 微影製程 31 3-3-3 金屬真空蒸鍍 37 3-3-4 PDMS翻模製程 38 3-4 晶片封裝 39 第四章 結果與討論 4-1 實驗架設 44 4-2 氣動式微幫浦及微閥門裝置 46 4-2-1 氣動式微幫浦及微閥門測試 48 4-3聚苯乙烯珠操控 53 4-3-1 細胞操控 55 4-3-2 電極排斥及吸引操控 56 4-4步進操控 60 第五章 結論與未來展望 5-1 結論 64 5-2 未來展望 65 參考資料 66 自述 72

    1. T. Richter, L. Loranelle, O. D. Richtard, U. Bilitewski, and D. J. Harrison, “Bi-enzymatic and Capillary Electrophoretic Analysis of Non-fluorescent Compounds in Microfluidic Devices: Determination of Xanthine,” Sensors and Actuators B, Vol. 81, pp. 369-376, 2002.
    2. K. Sato, A. Hibara, M. Tokeshi, H. Hisamoto, and T. Kitamori, “Microchip-based Chemical and Biochemical Analysis Systems,” Journal of Chromatography A, Vol. 987, pp. 197-204, 2003.
    3. R. Feynman, “There's Plenty of Room at the Bottom,” Journal of Micro Electro Mechanical Systems, Vol. 1, pp. 60-66, 1992.
    4. R. Feynman, “Infinitesimal Machinery,” Journal of Micro Electro Mechanical Systems, Vol. 2, pp. 4-14, 1993.
    5. M. Madou, “Fundamentals of Microfabrication,” CRC Press, New York, 1997.
    6. G. H. W. Sander and A. Manz, “Chip-based Microsystem for Genomic and Proteomic Analysis,” Trends in Analytical Chemistry, Vol. 19, pp. 364-378, 2000.
    7. I. Erill, R. Villa, P. Goudignon, L. Fonseca, J.A. Plaza, ”Silicon Microsystem Passivation for High-voltage Applications in DNA Chips,” Microelectronics and Reliability, Vol. 40, pp. 787-789, 2000.
    8. L. W. van H. Nicole, V. Oscar, M. M. L. van H. Adele, J. K. Esther, P. Ad, A. Aharoni, J. van T. Arjen, K. Jaap, “The Application of DNA Microarrays in Gene Expression Analysis,” Journal of Biotechnology, Vol. 78, pp. 271-280, 2000.
    9. H. A. Pohl, “Some Effects of Nonuniform Fields on Dielectrics,” Journal of Applied Physics, Vol. 29, pp. 1182-1188, 1958.
    10. H. A. Pohl, “Dielectrophoresis,” Cambridge University Press, Cambridge, 1978.
    11. X. B. Wang, Y. Huang, J. P. H. Burt, G. H. Markx, and R. Pethig, “Selective Dielectrophoretic Confinement of Bioparticles in Potential Energy Wells,” Journal of Physics D: Applied Physics, Vol. 26, pp. 1278-1285, 1993.
    12. T. B. Jones, “Electromechanics of Particles,” Cambridge University Press, 1995.
    13. J. Rousselet, G. H. Markx, and R. Pethig, “Separation of Erythrocytes and Latex Beads by Dieletrophoretic Levitation and Hyperlayer Field-Flow Fractionation,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 140, pp. 209-216, 1998.
    14. J. Voldman, M. Toner, M. L. Gray, and M. A. Schmidt, “A Dielectrophoresis-based Array Cytometer,” Transducers, pp. 322-325, 2001.
    15. J. Voldman, M. Toner, M. L. Gray, and M. A. Schmidt, “Design and Analysis of Extruded Quadrupolar Dielectrophoretic Traps,” Journal of Electrostatics, Vol. 57, pp. 69-90, 2003.
    16. G. Zhou, M. Imamura, J. Suehiro and M. Hara, “A Dielectrophoretic Filter for Separation and Collection of Fine Particles Suspended in Liquid,” IEEE Industry Applications, pp. 1404-1411, 2002.
    17. J. H. Nieuwenhuis, A. Jachimowicz, P. Svasek, M. J. Velleko, “High-speed Integrated Particle Sorters Based on Dielectrophoresis,” IEEE Industry Applications, pp. 64-67, 2004.
    18. G. B. Lee, C. H. Lin, and S. C. Chang, “Micromachine-based Multi-channel Flow Cytometers for Cell/Particle Counting and Sorting,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 447-454, 2005.
    19. R. Zengerle, J. Ulrich, S. Kluge, M. Richter and A. Richter, “A Bidirectional Silicon Micropump,” Sensors and Actuators A: Physical, Vol. 50, pp. 81-86, 1995.
    20. W. J. Spencer, W. T. Corbett, L. R. Dominguez and B. D. Shafer, “An Electronically Controlled Piezoelectric Insulin Pump and Valves,” IEEE Transactions on Sonics and Ultrasonics, Vol. 25, pp. 153-167, 1978.
    21. J. G. Smites, “Piezoelectric Micropump with Three Valves Working Peristaltically,” Sensors and Actuators, Vol. A21-A23, pp. 203-206, 1990.
    22. F. C. M. van de Pol, H. T. G. van Lintel, M. Elwenspoek and J. H. J.Fluitman, “Thermopneumatic Micropump Based on Micro-engineering Techiques, ” Sensors and Actuators A, Vol. 21, pp. 198-202, 1990.
    23. R. Zengerle, J. Ulrich, S. Kluge, M. Richter and A. Richter, “A Bidirectional Silicon Micropump,” Sensors and Actuators A, Vol. 50, pp. 81-86, 1995.
    24. W. Zhang and C. H. Ahn, “A Bi-directional Magnetic Micropump on A Silicon Wafer,” Solid-State Sensor and Actuators, pp. 94-97, 1996.
    25. E. Stemme and G. Stemme, “Valveless Diffuser/Nozzle Based Fluid Pump,” Sensors and Actuators A, Vol. 39, pp. 159-167, 1993.
    26. W. L. Benard, H. Kahn, A. H. Heuer and M. A. Huff, “A Titanium-Nickel Shape Memory Alloy Actuated Micropump,” Sensors and Actuators, pp. 361-364, 1997.
    27. M. A. Unger, H. P. Chou and T. Thorsen, A. Scherer and S. R. Quake, “Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography,” Science, Vol. 288, pp. 113-116, 2000.
    28. R. 郭盈成,“新型微幫浦與微閥門之設計與製作,”國立成功大學工程科學研究所碩士論文(2003).
    29. http://www.ibmm.informatics.bangor.ac.uk
    30. H. Morgan, N. G. Green, M. P. Hughes, W. Monaghan, T. C. Tan, “Large-area Travelling-wave Dielectrophoresis Particle Separator,” Journal of Micromechanics and Microengineering, Vol. 7, pp. 65-70, 1997.
    31. X. B. Wang, Y. Huang, F. F. Becker, P. R. C. Gascoyne, “A Unified Theory of Dielectrophoresis and Travelling Wave Dielectrophoresis,” Journal of Physics D: Applied Physics, Vol. 27, pp. 1571-1574, 1994.
    32. M. P. Hughes, R. Pethig, X. B. Wang, “Dielectrophoretic Forces on Particles in Travelling Electric Fields,” Journal of Physics D: Applied Physics, Vol. 28, pp. 474-482, 1995.
    33. X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A Unified Theory of Dielectrophoresis and Travelling Wave Dielectrophoresis,” Journal of Physics D : Applied Physics, Vol. 27, pp. 1571-1574, 1994.
    34. L. H. He, C. W. Lim, and B. S. Wu, “A Continuum Model for Size-dependent Deformation of Elastic Films of Nano-scale Thickness,” International Journal of Solids and Structures, Vol. 41, pp. 847-857, 2004.
    35. C. H. Wang and G. B. Lee, “The applications of integrated microfluidic chips on automatic diagnosis systems,” The 2005 IEEE International Conference on Robotics and Biomimetics, Hong Kong, 2005.
    36. Data Sheet for NANOTM SU-8 Negative Tone Photoresists, Formulations 50& 100, released by MICRO-CHEM. Corp.
    37. D. Armani, C. Liu and N. Aluru, “Re-Configurable Fluid Circuits by PDMS Elastomer Micromachining,” Proceedigs of IEEE Micro Electro Mechanical Systems, pp. 222-227, 1999.
    38. B. E. Slentz, N. A. Penner and F. E. Regnier, “Capillary Electrochromatography of Peptides on Microfabricated Poly(dimethylsiloxane) Chips Modified by Cerium(IV)-catalyzed Polymerization,” Journal of Chromatography A, Vol. 948, pp. 225–233, 2002.
    39. C. Yu, J. Vykoukal, D. M. Vykoukal, J. A. Schwartz, L. Shi and P. R. C. Gascoyne, “A Three-dimensional Dielectrophoretic Particle Focusing Channel for Microcytometry Applications,” Journal of Micro Electro Mechanical Systems, Vol. 14, pp. 480–487, 2005.
    40. D. Walz, H. Berg, G. Milazzo, “Bioelectrochemistry of Cells and Tissues,” Birkhauser Verlag, 1995.

    下載圖示 校內:立即公開
    校外:2005-08-29公開
    QR CODE