| 研究生: |
施佑澤 Shi, You-Ze |
|---|---|
| 論文名稱: |
探討以微熱成型法製作高深寬比之高分子微結構 Fabrication of High Aspect Ratio Polymeric Microstructures by Micro Thermoforming Process |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | polymethyl methacrylate(PMMA) 、放電加工 、微熱成型加工 、高深寬比 、高分子薄膜 |
| 外文關鍵詞: | microthermoforming, polymer thin film, polymethyl methacrylate(PMMA), high aspect raio, electrical discharge machininng(EDM) |
| 相關次數: | 點閱:109 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討以微熱成型加工,製作高深寬比的高分子微結構。使用的微結構模具是以微放電加工及線放電加工製作而成。透過改變溫度、壓力、及加壓時間等變數進行微熱成型實驗,並分別討論其對微熱成型加工的影響。結果顯示,實驗裝置預抽真空為一必要程序,由於模具之製作方法及實驗裝置的設計,使用微放電加工製得的模具,薄膜較易在邊緣處破裂或使成品形成馬鞍狀之微結構。溫度過高、壓力過大也容易使薄膜產生馬鞍狀。相對地,使用線放電加工所製得的模具,由於可以從微結構底部抽真空,因此微結構內可以完全抽真空,且實驗裝置的設計也可以減少上述缺點的發生。因為微放電加工模具,其微結構寬度大於線放電加工模具,所以,在相同的操作條件下,薄膜較容易下陷。當使用微放電加工之模具(寬260μm、深1000μm)時,在薄膜溫度大於Tg(10℃),加壓時間2min內,PMMA film下陷的深度與施加的壓力有正比的關係,薄膜溫度大於Tg(20℃),加壓時間30s內,下陷深度與施加壓力亦為正比關係。當薄膜溫度大於Tg(20℃),薄膜下陷深度與加壓時間為線性關係。當使用線放電加工模具( 寬200μm、深3500μm),在薄膜溫度大於Tg(20℃),加壓初期,下陷深度與施加壓力有正比關係,但此情況並不適用於薄膜溫度高於Tg(30℃)時。推導的理論值高估薄膜厚度與高分子下陷深度的關係,這乃是因為模具在高分子下陷的過程中,其溫度仍保持在高於Tg的緣故。本研究利用微熱成型加工,可製得寬100μm、深260μm,深寬比為2.6的高分子微結構。
In this study, we have investigated the micro thermoforming process for fabrication of high aspect ratio polymeric microstructures. The molds used for thermoforming were fabricated by electrical discharge machining, (EDM), and the processing parameters include the mold temperature, applied pressure and pressuring time. The results showed that pre-vacuum is an essential process for micro-EDM mold because of its mold design and device assembly. When using micro-EDM mold, the thermoformed film has a shape like“saddle”and it usually breaks near the edge of the microstructure. In contrast, for wire-EDM mold, the vacuum path is established through the bottom of the microstructures which prevents from lower vacuum level and non-uniform applied pressure. We also found that the wider the microstructure is, the easier the film sags. In addition, when using micro-EDM mold, the postive proportional relation between sagging of PMMA film and the applied pressure was obtained at film temperature 10 and 20℃ above Tg in the beginning. As to the wire-EDM, the postive proportional relation was obsesrved at film temperature 20℃ above Tg in the beginning but not at the film temperature 30℃ above Tg. As to the the relationship between film thickness and film sagging distance, the theoretical calculation overpredicts the experimental data, which can be reasonably justified by using an adjustable parameter. The aspect ratio of the polymer microstructures fabricated in this study can be up to 2.6.
1. Whitesides, G. M., ”The Origins and the Future of Microfluidics.”, Nature, 442,
368-373 (2006).
2. Lee, L. J., ”BioMEMs and Micro-/Nano-Processing of Polymers- An Overview.”, J.
Chin. Inst. Chem. Engrs., 34, 25-46 (2003).
3. Maleka, C.K., and Saileb, V., ”Applications of LIGA Technology to Precision Manufacturing
of High-Aspect-Ratio Micro-Components and -Systems: a Review.”, Microelectronics
Journal, 35, 131-143 (2004).
4. Becker, H., Laurie, E., and Locascio, B., “Polymer Microfluidic Devices.”, Talanta,
56, 267-287 (2002).
5. Heckele, M., and Schomburg, W.K., “Review on Micro Molding of Thermoplastic
Polymers.” J. Micromech. Microeng., 14, R1-R14 (2004).
6. Truckenm?ller1, R., Rummler, Z., Schaller, Th., and Schomburg, W.K., “Low-Cost
Thermoforming of Micro Fluidic Analysis Chips.” J. Micromech. Microeng., 12, 375-379
(2002).
7. Rai-Choudhury, P., “Handbook of Microlithography, Micromaching & Microfabrication
/ High Aspect Ratio Processing.”, (1997).
8. 張振銓,“高深寬比微結構模仁製造程序的研究-利用矽基加工技術.” (2002).?????
9. Rognert, A., Eicher, J., Miinchmeyert D., Peterst, R.P., and Mohr, J., “The LIGA
Technique-What Are The New Opportunities.” J. Micromech. Microeng., 2, 133-140
(1992).
10. Menz, W., “LIGA and Related Technologies for Industrial Application.” Sensor and
Actualors A, 54, 785-789 (1996).
11. Skardon, J., and Vanderberg, M., “Developing New Markets for High Aspect Ratio
Micro-machined Devices.” Microsystem Technologies, 5, 65-68 (1998).
12. Chung, S.J., Hein, H., Mohr, J., Pantenburg, F.J., Schulz, J., and Wallrabe, U. “LIGA
Technology Today and Its Industrial Applications.” Proceedings of SPIE, 4194 (2000).
13. Lawes, R.A., “Manufacturing Costs for Microsystems/MEMS Using High Aspect
Ratio Microfabrication Techniques.” Microsyst Technol, 13, 85-95 (2007).
14. Liu, G., Tian, Y., and Kan, Y., “Fabrication of High-Aspect-Ratio Microstructures
Using SU8 Photoresist.” Microsystem Technologies, 11, 343-346 (2005).
15. Tolfree, D.W.L., “Microfabrication Using Synchrotron Radiation.” Rep. Prog. Phys.,
61, 313-351 (1998).
16. Schmidt, A., and Ehrfeld, W., “Recent Developments in Deep X-ray Lithography.” J.
Vac. Sci. Technol. B, 166, 3526-3534 (1998).
17. Kupka, R.K., Bouamrane, F., Cremers, C., and Megtert, S., “Microfabrication:
LIGA-X and Applications.” Applied Surface Science, 164, 97-110 (2000).
18. Cheng, Y., Shew, B.Y., Lin, C.Y., Wei, D.H., and Chyu, M.K., “Ultra-deep LIGA
process.” J. Micromech. Microeng., 9, 58-63 (1999).
19. Malek, C.K., “Fabrication of High-Aspect-Ratio Precision MEMS with LIGA using
synchrotron radiation.” Proc. SPIE, 4592 (2001).
20. Tseng, F.G., and Yu, C.S., “High Aspect Ratio Ultrathick Micro-Stencil by ISR THB-
430N Negative UV Photoresist.” Sensors and Actuators A, 97-98, 764-770 (2002).
21. Dumbravescu, N., “Experiments for 3-D Structuring of Thick Resists by Gray Tone
Lithography.” Materials Science in Semiconductor Processing, 3, 569-573 (2000).
22. Con?d?ra, V., Goff, B.L., and Fabre. N., “Potentialities of a new positive photoresist
for the realization of thick moulds.” J. Micromech. Microeng., 9, 173-175 (1999).
23. Yang, C.R., Hsieh, G.W., Hsieh, Y.S., and Lee, Y.D., “Microstructuring Characteristics
of a Chemically Amplified Photoresist Synthesized for Ultra Thick UV-LIGA applications.”
J. Micromech. Microeng., 14, 1126-1134 (2004).
24. Lee, K.Y., LaBianca, N., Rishton, S.A., Zolgharnain, S., Gelorme, J.D., Shaw, J., and
Chang, T.H.P., “Micromachining Applications of a High Resolution Ultrathick Photoresist.”
J. Vac. Sci. Technol. B , 6, 3012-3016 (1995).
25. Lorenzyz, H., Despont, M., Fahrniy, N., LaBianca, N., Renaudy, P., and Vettigerx,
P., “SU-8: a Low-Cost Negative Resist for MEMS.” J. Micromech. Microeng., 7, 121-124
(1997).
26. Lorenz, H., Despont, M., Fahrni, N., Brugger, J., Vettiger, P., and Renaud, P., “High-
Aspect-Ratio, Ultrathick, Negative-tone Near-UV Photoresist and its Applications for
MEMS.” Sensor and Actualors A, 64, 33-39 (1998).
27. Zhang, J., Chan-Park, M.B., and Conner, S.R., “Effect of Exposure Dose on the Replication
Fidelity and Profile of very High Aspect Ratio Microchannels in SU-8.” Lab Chip,
4, 646-653 (2004).
28. Liu, G., Tian, Y., and Kan, Y., “Fabrication of High-Aspect-Ratio Microstructures
Using SU8 Photoresist.” Microsystem Technologies, 11, 343-346 (2005).
29. Laflianea, N., and Gelorme, J.D., “High Aspect Ratio Resist for Thick Film Application.”
Proceedings of SPIE, 2438.
30. Ling, Z.G., Lian, K., and Jian, L., “Improved Patterning Quality of SU-8 Microstructures
by Optimizing The Exposure Parameters.” Proceedings of SPIE, 3999 (2000).
31. Chung, C.K., Lu, H.C., and Jaw, T.H., “High Aspect Ratio Silicon Trench Fabrication
by Inductively Coupled Plasma.” Microsystem Technologies, 6, 106-108 (2000).
32. Richter, K., Orfert, M., Howitz, S., and Thierbach, S., “Deep Plasma Silicon Etch for
Microfluidic Applications.” Surface and Coatings Technology, 116-119, 461-467 (1999).
33. Zhang, C., Yang, C., and Ding, D., “Deep Reactive Ion Etching of PMMA.” Applied
Surface Science, 227, 139-143 (2004).
34. Zhao, Y., and Cui, T., “SOI Wafer Mold with High-Aspect-Ratio Microstructures for
Hot Embossing Process.” Microsystem Technologies, 10, 544-546 (2004).
35. Martya, F., Rousseau, L., Saadanya, B., Merciera, B., Francaisa, O., Mitab, Y., and
Bourouinaa, T., “Advanced Etching of Silicon Based on Deep Reactive Ion Etching for
Silicon High Aspect Ratio Microstructures and Three-Dimensional Micro- and Nanostructures.”
Microelectronics Journal, 36, 673-677 (2005).
36. Kassing, R., and Rangelow, I.W., “Etching Processes for High Aspect Ratio Micro
Systems Technology (HARMST).” Microsystem Technologies, 3, 20-27 (1996).
37. Gao, J.X., Yeo, L.P., Chan-Park, M.B., Miao, J.M., Yan, Y.H., Sun, J.B., Lam, Y.C.,
and Yue, C.Y., “Antistick Postpassivation of High-Aspect Ratio Silicon Molds Fabricated
by Deep-Reactive Ion Etching.” Journal of Microelectromechanical Systems, 15, 84-93
(2006).
38. Lazare, S., Lopez, J., and Weisbuch F., “High-Aspect-Ratio Microdrilling in Poly-
Mericmaterials with Intense KrF Laser Radiation.” Appl. Phys. A, 69, S1-S6 (1999).
39. Tokarev, V.N., Lopez, J., and Lazare, S., “Modelling of High-Aspect Ratio Microdrilling
of Polymers with UV Laser Ablation.” Applied Surface Science, 168, 75-78
(2000).
40. Tokarev, V.N., Lopez, J., Lazare, S., and Weisbuch, F., “High-Aspect-Ratio Microdrilling
of Polymers with UV Laser Ablation: Experiment with Analytical Model.”
Appl. Phys. A, 76, 385-396 (2003).
41. Tseng, A.A., Chen, Y.T., and Ma, K.J., “Fabrication of High-Aspect-Ratio Microstructures
Using Excimer Laser.” Optics and Lasers in Engineering, 41, 827-847 (2004).
42. Yang, C.R., Hsieh, Y.S. Hwang, G.Y., and Lee, Y.D., “Photoablation Characteristics
of Novel Polyimides Synthesized for High-Aspect-Ratio Excimer Laser LIGA Process.” J.
Micromech. Microeng., 14, 480-489 (2004).
43. Lim, H.S., Wong, Y.S., Rahman, M., and Lee, M.K.E., “A Study on the Machining of
High-Aspect Ratio Micro-structures Using Micro-EDM.” Journal of Materials Processing
Technology, 140, 318-325 (2003).
44. 游居學, “線放電加工機在陣列式微電極與微模具之開發研究.” (2004).???????
45. Schoth, A., Forster, R., and Menz, W., “Micro Wire EDM for High Aspect Ratio 3D
Microstructuring of Ceramics and Metals.” Microsystem Technologies, 11, 250-253 (2005).
46. Liao, Y.S., Cheng, S.T., Lin, C.S., and Chuang, T.J., “Fabrication of High Aspect Ratio
Microstructure Arrays by Micro Reverse Wire-EDM.” J. Micromech. Microeng., 15,
1547-1555 (2005).
47. Cao, D.M., Jiang, J., Yiang, R., and Meng, W.J., “Fabrication of High-Aspect-Ratio
Microscale Mold Inserts by Parallel Micro-EDM.” Microsyst Technol, 12, 839-845 (2006).
48. Yu, L., Koh, C.G., Lee, L.J., and Koelling, K.W., “ExperimentaI Investigation and
Numerica I Simulation of Injection Molding With Micro-Features.” Polymer Engineering
Science, 42, 871 (2002). 42, 871-888 (2002).
49. Ehrfeld, W., and Lehr, H., “Deep X-ray Lithography for the Production of Three-
Dimensional Microstructure from Metals, Polymers and Ceramics.” Radiat. Phys. Chem,
45, 349-365 (1995).
50. Despa, M.K., Kelly, K.W., and Collier, J.R., “Injection Molding of Polymeric LIGA
HARMs.” Microsystem Technologies, 6, 60-66 (1999).
51. Chen, R.H., and Lan, C.L., “Fabrication of High-Aspect-Ratio Ceramic Microstructures
by Injection Molding with the Altered Lost Mold Technique.” Journal of Microelectromechanical
Systems, 10, 62-68 (2001).
52. Yao, D., and Kim, B., “Simulation of the Filling Process in Micro Channels for
Polymeric Materials.” J. Micromech. Microeng., 12, 604-610 (2002).
53. Xu, G., Yu, L., Lee, L.J., and Koelling, K.W., “Experimental and Numerical Studies
of Injection Molding With Microfeatures.” Polymer Engineering and Science, 45, 866-875
(2005).
54. Martynova, L., Locascio L.E., Gaitan, M., Kramer, G.W., Christensen, R.G., and
MacCrehan, W.A., “Fabrication of Plastic Microfluid Channels by Imprinting Methods.”
Anal. Chem., 69 (1997).
55. Heckele, M., Bacher, W., and Muller, K.D., “Hot Embossing - The Molding Technique
for Plastic Microstructures.” Microsystem Technologies, 4, 122-124 (1998).
56. Jaszewski, R.W., Schift, H., Schnyder, B., Schneuwly, A., and Gro?ning b, P., “The
Deposition of Anti-Adhesive Ultra-Thin Teflon-Like Films and their Interaction with
Polymers During Hot Embossing.” Applied Surface Science, 143, 301-308 (1999).
57. Gottschalcha, F., Hoffman, T., Torres, C.M.S., Schulzb, H., and Scheerb, H.D.,
“Polymer Issues in Nanoimprinting Technique.” Solid-State Electronics, 43, 1079-1083
(1999).
58. Becker, H., and Heim, U., “Hot Embossing as a Method for the Fabrication of Polymer
High Aspect Ratio Structures.” Sensors and Actuators, 83, 130-135 (2000).
59. Hirai, Y., Fujiwara, M., Okuno, T., and Tanaka, Y., “Study of the Resist Deformation
in Nanoimprint Lithography.” J. Vac. Sci. Technol. B, 196, 2811-2815 (2001).
60. Juang, Y.J., Lee, L.J., and Koelling, K.W., “Hot Embossing in Microfabrication.Part
II: Rheological Characterization and Process Analysis.” Polymer Engineering and Science,
42, 551-566 (2002).
61. Juang, Y.J., Lee, L.J., and Koelling, K.W., “Hot Embossing in Microfabrication. Part
I: Experimental.” Polymer Engineering and Science, 42, 539-550 (2002).
62. Qi, S., Liu, X., Ford, S., Barrows, J., Thomas, G., Kelly, K., McCandless, A., Lian,
K., Goettertc, J., and Soper, S.A., “Microfluidic Devices Fabricated in Poly(methyl methacrylate)
Using Hot-Embossing with Integrated Sampling Capillary and Fiber Optics for
Fluorescence Detection.” Lab Chip, 2, 88-95 (2002).
63. Zhao, Y., and Cui, T., “Fabrication of High-Aspect-Ratio Polymer-Based Electrostatic
Comb Drives Using the Hot Embossing Technique.” J. Micromech. Microeng., 13,
430-435 (2003).
64. Guo, Y., Liu, G., Zhu, X., and Tian, Y., “Analysis of the Demolding Forces During
Hot Embossing.” Microsyst Technol,13, 411-415 (2007).
65. Bender, M., Otto, M., Hadam, B., Vratzov, B., Spangenberg, B., and Kurz, H., “Fabrication
of Nanostructures Using a UV-based Imprint Technique.” Microelectronic Engineering,
53, 233-236 (2000).
66. Otto, M., Bender, M., Hadam, B., Spangenberg, B., and Kurz, H., “Characterization
and Application of a UV-based Imprint Technique.” Microelectronic Engineering, 57-58,
361-366 (2001).
67. Chan-Park, M.B., Yan, Y., Neo, W.K., Zhou, W., Zhang, J., and Yue, C.Y., “Fabrication
of High Aspect Ratio Poly(ethylene glycol)-Containing Microstructures by UV Embossing.”
Langmuir, 19, 4371-4380 (2003).
68. Chan-Park, M.B., and Neo,W.K., “Ultraviolet Embossing for Patterning High Aspect
Ratio Polymeric Microstructures.” Microsystem Technologies, 9, 501-506 (2003).
69. Yan, Y., Chan-Park, M.B., Gao, J., and Yue, C.Y., “Electroless Nickel-Plated UVEmbossed
Microstructured Surface with Very High Aspect Ratio Channels.” Langmuir ,
20, 1031-1035 (2004).
70. Gao, J., Chan-Park, M.B., Xie, D.Z., Yan, Y.H., Zhou, W.X., Ngoi, N.A.G., and Yue,
C.Y., “UV Embossing of Sub-micrometer Patterns on Biocompatible Polymeric Films Using
a Focused Ion Beam Fabricated TiN Mold.” Chem. Mater., 16, 956-958 (2004).
71. Yan, Y.H., Chan-Park, M.B., and Yue, C.Y., “CF4 Plasma Treatment of Poly(dimethylsiloxane):
Effect of Fillers and Its Application to High-Aspect-Ratio UV Embossing.”
Langmuir, 21, 8905-8912 (2005).
72. Zhou,W.X., and Chan-Park, M.B., “Large Area UV Casting Using Diverse Polyacrylates
of Microchannels Separated by High Aspect Ratio Microwalls.” Lab Chip, 5, 512-518
(2005).
73. Kim, K., Park, S., Lee, J.B., Manohara, H., Desta, Y., Murphy, M., and Ahn. C.H.,
“Rapid Replication of Polymeric and Metallic High Aspect Ratio Microstructures Using
PDMS and LIGA Technology.” Microsystem Technologies, 9, 5-10 (2002).
74. Schmitz, G.J., Brucker, C., and Jacobs, P., “Manufacture of High-Aspect-Ratio
Micro-Hair Sensor Arrays.” J. Micromech. Microeng., 15, 1904-1910 (2005).
75. Zhang, Y., Lo, C.W., Taylor, J.A., and Yang, S., “Replica Molding of High-Aspect-
Ratio Polymeric Nanopillar Arrays with High Fidelity.” Langmuir, 22, 8595-8601 (2006).
76. Yeo, L.P., Yan, Y.H., Lam, Y.C., and Chan-Park, M.B. “Design of Experiment for Optimization
of Plasma-Polymerized Octafluorocyclobutane Coating on Very High Aspect
Ratio Silicon Molds.” Langmuir, 22, 10196-10203 (2006).
77. Sala, G., Landro, L.D., and Cassago, D., “A Numerical and Experimental Approach
to Optimise Sheet Stamping Technologies: Polymers Thermoforming.” Materials and Design,
23, 21-39 (2002).
78. 陳文瑛譯 .“實用熱成型原理及應用.” (1992).?
79. Chang, J.H., and Yang, S.Y., “Gas Pressurized Hot Embossing for Transcription of
Micro-Features.” Microsystem Technologies, 10, 76-80 (2003).
80. Tadmor, Z., and Gogos, C.G., “Principles of Polymer Processing” , John Wiley &
Sons, Inc, P.648 (1979)