簡易檢索 / 詳目顯示

研究生: 許志成
Shiu, Chih-cheng
論文名稱: 形狀記憶合金驅動具力量感測器微夾爪之閉迴路控制
Closed-loop control of SMA-drive micro gripper with force sensor
指導教授: 張仁宗
Chang, Ren-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 135
中文關鍵詞: 微力量感測器RES演算法形狀記憶合金
外文關鍵詞: micro-force-sensor, RES algorithm, shape memory alloy
相關次數: 點閱:164下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以「光機電系統控制研究室」研究多年的微夾持系統為基礎,針對SMA致動器量測FOD曲線建立遲滯模型,量測時間常數建立其一階動態轉移函數及量測延遲時間,並設計模糊控制器搭配PI控制器,透過RES演算法完成微夾持器的開口大小量測及微力量感測器之角度估測,達到影像閉迴路控制及夾持力的監控。

    This thesis is based on the research of micro-gripping system by “OME System Lab” in recent years. For modeling a SMA actuator, the present approach is to measure FOD curve establishing hysteresis model, measure time constant to establish first-order transfer function, and measure delay time. Designing a fuzzy controller with PI control and using a RES algorithm to complete estimating the tip opening of micro-gripper and the angle of force sensor, image-based closed-loop control with gripping force monitoring can be achieved.

    中文摘要………………………………………………………………………I 英文摘要…………………………………………...………………….…..…II 誌謝………………………………………………………...………………..III 表目錄…………………………………………………………...…………VII 圖目錄……………………………………………………………..………VIII 符號表……………………………………………………………...………XII 第一章 緒論………………………………………………………………….1 1-1 前言…………………………………………………………………1 1-2 文獻回顧……………………………………………………………1 1-2-1 微致動器介紹………………………………...…………….1 1-2-2 形狀記憶合金之驅動控制 ………………………………2 1-2-3 形狀記憶合金建模…………………...…………………….9 1-3 研究目標……………………………………………………………9 1-4 研究方法……………………………………………………………9 1-5 本文架構…………………………………………………………..10 第二章 形狀記憶合金致動器之實現與模擬……………………………...12 2-1 形狀記憶合金簡介 ……………….………………………………12 2-1-1形狀記憶合金發展背景……………………………………12 2-1-2 形狀記憶合金效應…………………………………...…...13 2-1-2-1 形狀記憶效應…………………………………….13 2-1-2-2 擬彈性效應……………………………………….14 2-1-3 形狀記憶合金溫度特性………………………...………...15 2-2形狀記憶合金致動器之製造……...………………..……………..17 2-3 SMA致動器影像量測………………………………….………….18 2-3-1 SMA驅動電路………..……………………………………..18 2-3-2 SMA致動器影像量測 ……………..……………………….21 2-4 形狀記憶合金模型…………………………..……………………..24 2-4-1 形狀記憶合金模型比較………………..……………...…...24 2-4-2 遲滯模型Preisach Model…………..……………………….25 2-4-2-1 Preisach Model原理………………………………...25 2-4-2-2 Preisach平面邊界…………………………………..27 2-4-2-3 FOD曲面之建立……………………………………29 2-4-2-4 FOD量測誤差分析…………………………………34 2-4-3 Inverse Preisach Model補償………..……………………….35 2-4-4 SMA Delay time量測…………..……………………………39 2-4-5 SMA 時間常數量測..……………………………………….47 2-5 SMA系統響應分析……………..…………………………………..50 第三章 撓性微夾持器建模與分析………………………………………...54 3-1 微夾持器之設計與製造 ……….………………………………….54 3-1-1 微夾持器之設計………………...…………………………...54 3-1-2 微夾持器之製造……..……………………..…...…………...55 3-1-3 微夾持器與致動器之組裝…………..………………….…...58 3-2 微夾持器之模型分析…………..…………………………………..58 3-2-1 撓性軸承分析……………………………………...………...58 3-2-2 微夾持器之位移增益分析……………………………...…...59 3-2-3 微夾持器之力量-位移增益分析…………………………….62 3-3微夾持器有限元素分析……………..……………………………...63 3-3-1 位移增益分析………………………...……………………...63 3-3-2 力量-位移增益分析………………………………………….68 3-3-3 夾持力量估測……………………...………………………...69 第四章 控制器設計………………………………………………………...73 4-1 夾爪爪尖運動估測……………..…………………………………..73 4-2 微夾持器之控制器設計…………..………………………………..78 4-2-1 PI控制器搭配前饋補償器 …………...…...………………..78 4-2-2 PI控制器搭配模糊控制器 ……………...…...……………..82 4-2-2-1 輸入及輸出參數設計……………………………….83 4-2-2-2 歸屬函數設計……………………………………….85 4-2-2-3 模糊化……………………………………………….86 4-2-2-4 模糊知識庫………………………………………….87 第五章 系統整合與測試…………………………………………………...95 5-1 影像角度估測…………..…………………………………………..95 5-2 夾持力測試………..………………………………………………..99 5-2-1 物件及置物平台設計………………………...……………...99 5-2-2 靜摩擦係數量測………………………...………………….101 5-2-3 使用者介面設計…………………………...……………….102 5-2-4 系統架構……………………………...…………………….102 5-2-5 夾持物件實驗……………………………...……………….104 第六章 結論與未來展望………………………………………………….109 6-1 結論……………………..…………………………………………109 6-2 未來展望……………………..……………………………………110 參考文獻……………………..…………………………………………….111 自述……………………..………………………………………………….115

    參考文獻
    [1] D. Reynaerts and H. V. Brussel, “Design Aspect of Shape Memory Actuators,” Mechatronics, 1998.
    [2] T. Hasegawa and S. Majima, “A Control System to Compensate the Hysteresis by Preisach Model on SMA Actuator,” IEEE International Symposium on Micromechatronics and Human Science, 1998.
    [3] I. Mihalcz, “Fundamental Characteristics and Design Method for Nickle-Titaum Shape Memory Alloy,” Perodica Polytypechina Ser. Mech. ENG., 2000.
    [4] S. Majima, K. Kodama and T. Hasegawa, “Modeling of Shape Memory Alloy Actuator and Tracking Control System with the Model,” IEEE Transactions on Control Systems Technology, Vol. 9, NO. 1, 2001.
    [5] N. Ma, G. Song and H-J Lee, “Position control of shape memory alloy actuators with internal electrical resistance feedback using neural networks,” Smart Mater. Struct., 2004.
    [6] S. M. Dutta, F. H. Ghorbel and J. B. Dabney,” Modeling and Control of a Shape Memory Alloy Actuator,” IEEE International Symposium on Intelligent Control Limassol, 2005.
    [7] K. K. Ahn and B. K. Nguyen, “Position Control of Shape Memory Alloys Actuators Using Self Tuning Fuzzy PID Controller,” International Journal of Control, Automation, and System, Vol. 4, no.6, pp. 756-762, 2006.
    [8] N. Bizdoaca, H. Hamdan and D. Selisteanu, ”Fuzzy Logic Controller for a Shape Memory Alloy Tentacle Robotic Structure,” Proceedings of the IEEE Conference on Information & Commuation Technologies: from Theory to Applications, pp. 24-28, 2006.
    [9] C. H. Joshi, “Shape Memory Alloys, New materials,” pp. 26-72, 1992.
    [10] K. Tanaka, “A Thermomechanical Sketch of Shape Memory Effect: One-Dimensional Tensile Behavior,” Res Mechanica, Vol. 18, no. 3, pp. 251-263, 1986.
    [11] L. C. Brinson, “One-Dimensional Constitutive Behavior of Shape Memory
    Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable,” Journal of Intelligent Material Systems and Structure, Vol. 4, 1993.
    [12] 顧鴻壽等,“形狀記憶合金講習會”,工業技術研究院工業材料研究所,中華民國七十七年十月。
    [13] 舟久保 熙康,“形狀記憶合金”,復漢出版社,1999。
    [14] 廖南吉,“形狀記憶合金與用途”,南臺出版社,1988。
    [15] 任勇生,王世文,李俊寶,沈應鵬,“形狀記憶合金在結構主被動震動控制中的應用”,力學進展,Vol 29,pp. 19-33,1999。
    [16] J. L. Pons, D. Reynaerts, J. Peirs, R. Ceres, and H. VanBrussel, “Comparison of Different Control Approaches to Drive SMA Actuators,” ICAR’97, pp. 819-824.
    [17] Koji Ikuta, “Mathematical Model And Experimental Verification of Shape Memory Alloy for Design Micro Actuator,” IEEE, pp103-108, 1991.
    [18] Daniel R. Madill, “Modeling and L2-Stability of a Shape Memory Alloy
    Position Control System,”IEEE Transaction on Control System Technology, Vol.6, pp.473-481, 1998.
    [19] K. Ikuta, “Mathematical Model And Experimental Verification of Shape
    Memory Alloy for Design Micro Actuator,” IEEE, pp103-108, 1991.
    [20] D. R. Madill, “Modeling and L2-Stability of a Shape Memory Alloy
    Position Control System,” IEEE Transaction on Control System Technology,
    Vol.6, pp.473-481, 1998.
    [21] R. B. Gorbet, “Preisach Model Identification of a Two-Wire SMA Actuator,” IEEE International Conference on Robotics and Automation, pp.2161-2167, 1998.
    [22] P. Ge, M. Jouaneh, “Tracking Control of a Piezoceramic Actuator,” IEEE Transaction on Control System Technology, Vol.4, pp. 209-216, May1996.
    [23] 机啟成,「形狀記憶合金驅動生醫用高分子微夾持系統之發展」,國
    立成功大學機械工程學系碩士論文,中華民國九十三年六月。
    [24] 施博偉,「形狀記憶合金驅動微夾持器之應用」,國立成功大學機械
    工程學系碩士論文,中華民國九十四年七月。
    [25] 鄭志羿,「微夾持器力量控制之發展」,國立成功大學機械工程學系
    碩士論文,中華民國九十五年六月。
    [26] S. Maeda, k. Minami, M. Esashi, “Excimer laser induced CVD and its application to selective non-planar metalIization,” J. Micromech. Microeng,Vol. 5, pp. 237-242, 1995.
    [27] J. M. Paros, “How to Design Flexure Hinges,” Machine design, vol.36,
    pp151-156, 1965.
    [28] 程永華,「壓電致動微型撓性挾持器之設計、製造與控制」,國立成
    功大學機械工程學系碩士論文,中華民國八十八年六月。
    [29] 陳慶昌,「影像自動化微組裝工廠之發展」,國立成功大學機械工程
    學系碩士論文,頁次:38-41,中華民國九十四年六月。
    [30] S. Tzafestas and N. P. Papanikolopoulos, “Incremental fuzzy expert
    PID control,”IEEE Transactions on Industrial Electronics, Vol. 37,
    no. 5, pp. 365-371, 1990.

    下載圖示 校內:2008-08-08公開
    校外:2008-08-08公開
    QR CODE