| 研究生: |
程萬鈞 Cheng, Wan-Jiun |
|---|---|
| 論文名稱: |
以奈米膜研究可逆電透析之能量轉換系統 Experimential Study of Reverse Electrodialysis Energy Converter Using Nanomembrane |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 可逆電透析 、擴散係數 、奈米孔洞 、擴散電流 、擴散電位 、吉布士能 、離子交換膜 |
| 外文關鍵詞: | Reverse electrodialysis, Diffusion coefficient, Nanopore, Diffusion current, Diffusion potential, Gibbs free energy, Ion-exchange membrane |
| 相關次數: | 點閱:126 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
能源短缺一直是全世界共同關注的問題,而我們生存的環境存在著大量且可以被開發的乾淨能源,很多學者不斷努力在嘗試利用這些乾淨的能源轉換為我們生活上所能使用。本研究透過簡單且容易取得的材料來製作出一能量轉換裝置,濃度梯度是一種Gibbs free energy,透過市面上可購得之奈米膜,取代RED所使用的離子交換膜,利用奈米尺度下電雙層重疊效應,成功的將Gibbs free energy轉換為電能。
本論文主要包含兩個部分:(1)電極的選擇及可適用性、(2)不同的奈米膜在不同濃度差下所能產生的功率密度分析。第一部分,考量到成本的原因,銅電極是便宜且容易取得的。透過高導電性無氧銅來探討在不同電解液及濃度下銅電極的穩定性,並繪製穩態電壓對時間的作圖。結果顯示因銅電極接觸的電解液並不存在銅離子,電極表面所產生的化學反應過於複雜,導致電壓的不穩定且達到steady state voltage的時間太久。第二部分利用市面上所能購得的兩種奈米膜,材質為Polycarbonate以及Aluminum Oxides,兩種膜的表面電荷密度並不相同。電極使用氯化銀參考電極,探討在KCl、NaCl以及LiCl三種電解液下所能產生的open-circuit voltage、short-circuit current,並進一步繪製I-V curve來求得所能產生的power generation以及power density。在diffusion coefficient以及double layer overlap的效應下,使用Polycarbonate膜所能產生的最大power density可達到0.688 mW/cm2,這是一個能被期待的結論。
Energy shortage has always been an issue throughout the world, and the environment that we are living exists a large amount of clean energy sources that can be developed. Many researchers are attempting to use these energy sources into our daily life continuously. This study uses materials that are simple and easy access to develop a energy converter. Concentration gradient is a kind of Gibbs free energy, by replacing the ion exchange membrane in reverse electrodialysis (RED) with the nanopore membrane obtained from market, Gibbs free energy was sucessfully converted to electricity under the electric double layer effect in nano scale.
The study includes two parts: (1) selection and applicability of electrode, (2) analyzation of power density of different nanopore membranes in different concentration deference. In the first section, copper electrode was chosen due to the cost of electrodes. The stability of copper electrode in different electrolyte and different concentrations was studied and discussed through high conductivity oxygen free copper, and the figure of the voltage in steady state versus time was drawn. The result shows that due to the electrolyte that contacted the copper electrode does not contain copper ions and the chemical reaction processed on electrode surface was too complicated, it has an unstable voltage and the time reached steady state voltage was over long. Two different nanopore obtained from the market was used in the second section, material of the membranes is polycarbonate and aluminum oxides, the electric charge density of both membranes’ surfaces are different. The electrode used was silver chloride reference electrode. Open-circuit voltage and short-circuit current in three different electrolyte (KCl, NaCl, and LiCl) was discussed, and the power generation and power density that can be produced was obtained from I-V curve. Under the effect of diffusion coefficient and double layer overlap, the maximum power density produced by polycarbonate membrane can achieve 0.688 mW/cm2, and which is a result that is worth looking forward to.
1. T. A. Volk, L.P. Abrahamson, E.H. White, E. Neuhauser, E. Gray, C.Demeter, C. Lindsey, J. Jarnefeld, D.J. Aneshansley, R. Pellerin and S. Edick., "Developing a Willow Biomass Crop Enterprise for Bioenergy and Bioproducts in the United States.", Proceedings of Bioenergy, 2000, pp 15-19
2. P. Michalak, J. Zimny, "Wind energy development in the world, Europe and Poland from 1995 to 2009; current status and future perspectives ", Renewable and Sustainable Energy Reviews, 2011, 15(5), pp 2330-2341
3. D. Weisser, R. S. Garcia, " Instantaneous wind energy penetration in isolated electricity grids: concepts and review ", Renewable Energy, 2005, 30(8), pp 1299-1308
4. M. E “Renewables 2005 global status report”, DIANE Publishing, 2010
5. L. Carrette, K. A. Friedrich, U. Stimming, "Fuel Cells – Fundamentals and Applications", 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany
6. L. Mond, C. Langer, F. Quinck, "Action Of Carbon Monoxide Ok Nickel.", Journal of the Chemical Society, Transactions, 1890, pp 749-753
7. J. Larminie, A. Dicks, "Fuel Cell Systems Explained", SAE International and John Wiley & Sons, Ltd., 2003, 2th
8. N. Taniguchi, "On the Basic Concept of Nano-Technology", Proc. Intl. Conf. Prod. Eng, Japan Society of Precision Engineering (1974)
9. D. A. LaVan, "Models of Eel Cells Suggest Electrifying Possibilities", National Institute of Standards and Technology press release, 2008, October 1
10. J. T. Littleton, B. Ganetzky, "Ion channels and synaptic organization: analysis of the Drosophila genome", Neuron, 2000, 26, pp 35-43
11. B. Hille, "Ionic Channels of Excitable Membranes Sinauer Associates", Sunderland, MA, 1992, pp 59-115
12. T. M. Jessell, E. R. Kandel, J. H. Schwartz , " Principles of Neural Science ", McGraw-Hill, 2000, 4th, pp 88-134
13. C. C. Harrell, P. Kohli, C. R. Martin, "Conical-Nanotube Ion-Current Rectifiers:The Role of Surface Charge", Am. Chem. Soc., 2004, 126(35), pp 10850–10851
14. J. X. Zhang, J. X. Wang, Y. Zhang, J. P. Zuo, J. M. Wu, Y. Sui, Y. Li" Synthesis and immunosuppressive activity of new artemisinin derivatives containing polyethylene glycol group ", Acta Pharmaceutica Sinica, 2006, 41(1), pp 65-70
15. J. L. Brian, H. Iddo, K. P. Vijay, D.Cees, G. L. Serge, "Simultaneous Electrical Transport and Scanning Tunneling Spectroscopy of Carbon Nanotubes", Nano Lett., 2007, 7(10), pp 2937–2941
16. V. Ivan, S. Sergei, S. Zuzanna, "Ionic Selectivity of Single Nanochannels", Nano Lett., 2008, 8(7), pp 1978–1985
17. W. Guo, L. Cao, J. Xia, F. Nie, W. Ma, J. Xue, Y. Song, D. Zhu, Y. Wang, L. Jiang, "Energy Harvesting with Single-ion-selective Nanopores", Adv. Funct. Mater. 2010, 20(8), pp 1339-1344
18. J. N. Weinstein, F. B. Letiz," Electric Power from Differences in Salinity: The Dialytic Battery", Science 1976, 191(4227), pp 557-559
19. R. E. Lacey, "Energy by reverse electrodialysis", Ocean Engineering, 1980, 7(1), pp 1-47
20. J. Veerman, M. Saakes, S. J. Metz, G. J. Harmsen, "Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water.", Journal of Membrane Science, 2009, 327(1-2), pp 136–144
21. R. E. Pattle, "Production of electric power by mixing fresh and salt water in the hydroelectric pile", Nature, 1954, 174, pp 660
22. J. N. Weinstein, F. B. Leitz, "Electric power from differences in salinity: The dialytic battery.", Science, 1976, 191(4227), pp 557–559
23. J. W. Post, J. Veerman, H. V. M. Hamelers, "Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis", Journal of Membrane Science, 2007, 288(1-2), pp 218-230
24. C. K. Dyer., "Fuel Cells for Portable Applications", Journal of Power Sources, 2002, 2002(3), pp 8-9
25. T. Markvart, L. Castaner, "Practical handbook of photovoltaics: fundamentals and applications ", Elsevier Oxford, 2003, pp 71-483
26. J. A. Duffie, W.A. Beckman, "Solar energy thermal processes", John Wiley and Sons,New York, NY, 1974, pp 244-257
27. C.M. Lampert, "Smart switchable glazing for solarenergy and daylight control", Solar Energy Materials and Solar Cells, 1998, 52(3-4), pp 207-221
28. R. M. Henderson, J. Conkling, S. Roberts, " SunPower: Focused on the Future of Solar Power ", Sloan Management, 2007, pp 7-42
29. A. F. Regin, S.C. Solanki, J.S. Saini, "Heat transfer characteristics of thermalenergy storage system using PCM capsules: A review", Renewable and Sustainable Energy Reviews, 2008, 12(9), pp 2438–2458
30. T. M. Tritt, H. Böttner, L. Chen,"Thermoelectrics: Direct Solar Thermal Energy Conversion", Resources Solar, 2008 , 33, pp 366-368
31. H. Lhermet, C. Condemine, M. Plissonnier, R. Salot, P. Audebert, M. Rosset, "Efficient Power Management Circuit: From Thermal Energy Harvesting to Above-IC Microbattery Energy Storage", Solid-State Circuits, 2008, 43(1), pp 246-255
32. S. J. Olney, T. N. Monga, P. A. Costigan" Mechanical energy of walking of stroke patients ", Arch Phys Med Rehabil, 1986, 67(2), pp 8-92
33. S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z. L. Wang, "Self-powered nanowire devices", Nat. Nanotechnol, 2010, pp 366–373
34. H. J. Frank, van der Heyden, D. Stein, C. Dekker,"Streaming currents in a single nanofluidic channel.", Phys Rev Lett, 2005, 5, pp 116104-116107
35. L. Cao, W. Guo, W. Ma, L. Wang, F. Xia, S. Wang, Y. Wang, L. Jiang, D. Zhu, "Towards understanding the nanofluidic reverse electrodialysis system", Energy & Environmental Science, 2011, 4, pp 2259-2266
36. J. Xu, D. A. Lavan, "Designing artificial cells to harness the biological ion concentration gradient", Nature Nanotechnology, 2008, 3, pp 666-670
37. R. F. Probstein "Physicochemical hydrodynamics: an introduction", John Wiley & Sons, Inc. 1994
38. Q. Pu, J. Yun, H. Temkin, S. Liu, "Ion-Enrichment and Ion-Depletion Effect of Nanochannel Structyres", Nano letters, 2004, 4(6), pp 1099-1103
39. R. B. Schoch, J. Han, P. Renaud, "Transport phenomena in nanofluidics", Reviews of Modern Physics, 2008, 80, pp 839-883