| 研究生: |
蔡正修 Tsai, Cheng-Hsiu |
|---|---|
| 論文名稱: |
台灣上市電子類股價指數走勢預測之研究 The Study of the Forecasting of the Stock Prices and Trend for the Electronic Industry in Taiwan |
| 指導教授: |
吳宗正
Wu, Chung-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 時間數列 、電子類股價指數 、倒傳遞類神經網路 、適應性網路模糊推論系統 、迴歸分析 |
| 外文關鍵詞: | Regression Analysis, Adaptive Network-Based Fuzzy Inference System, Electronic Industry stock price index, Back-Propagation Network, Time Series |
| 相關次數: | 點閱:109 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前台灣的銀行存款利率低,經濟發展也受到國家政策所限制,人民生活顯得艱難,若想創造額外的財富就要懂得投資。股票投資具有高報酬率和高變現性的優點,一直以來都是熱門的投資工具之一,其中電子類股更是股市中的主流股,其成交值可佔總成交值的六至八成,所以電子類股的走勢足以帶動台股的波動。而投資人若能掌握股價指數高低和漲跌,則可較正確地制定投資策略,進而獲取利潤。因此,本研究運用迴歸分析、時間數列、倒傳遞類神經網路和適應性網路模糊推論系統等方法建立模式,以各模式預測台灣上市電子類股價指數隔月的收盤指數,並比較各模式之預測優劣。研究結果顯示,在預測指數上以時間數列模式最佳,而在預測指數走勢上以因素分析萃取變數之複迴歸模式最佳。適應性網路模糊推論系統在訓練樣本中藉由其強力的學習能力,使得各方面配適結果最佳,但在預測時整體來說績效最差。倒傳遞類神經網路模式整體的預測績效比適應性網路模糊推論系統佳,但劣於傳統統計方法。
The bank account interest rate of Taiwan is low at present, and the economy development is also limited by state policy, and therefore people’s lives seem to be difficult. If people want to gain additional wealth, they must know how to invest. The stocks are always popular for their advantages of expectable good return and high cash conversion rate. The electronic industry is mainstream industry, and the tendency of Electronic Industry stock price index is enough to drive the fluctuation of the whole stock market. If the investor can grip the movement of stock price index, they can draw up the investment strategy accurately and obtain profits. As a result, we will establish prediction model by Regression Analysis、Time Series、Back-Propagation Network and Adaptive Network-Based Fuzzy Inference System, and compare accuracy of all the prediction models. The result shows that Time Series is the best in the forecasting of the stock prices, and Regression Analysis that using Factor Score is the best in the forecasting of the trend. Adaptive Network-Based Fuzzy Inference System is strong to train sample, but it is the worst to forecasting of the stock prices and trend. Back-Propagation Network get a better result than Adaptive Network-Based Fuzzy Inference System as a whole, but Statistical Methods have the best result.
中文部份:
1. 尤明偉(2001),「應用類神經網路於股票技術指標聚類與預測分析之研究」,義守大學工業管理研究所碩士論文。
2. 朱富春(1978),股價分析,聯經出版有限公司。
3. 吳文文(2001),「台灣電子股分類及其股價預測之研究」,朝陽科技大學財務金融研究所碩士論文。
4. 何旭輝(1999),「應用不確定模式於股票投資之研究」,國立成功大學企業管理學研究所碩士論文。
5. 何宜鍵(1997),「上市公司股價報酬率及波動性之預測-類神經網路與多元迴歸模型之配適性研究」,國立中正大學企業管理學研究所碩士論文。
6. 李惠妍(2003),「類神經網路與迴歸模式在台股指數期貨預測之研究」,國立成功大學管理學院高階管理碩士在職專班(EMBA)碩士論文。
7. 侯惠月(2000),「統計方法與類神經網路在台股指數期貨之研究」,國立成功大學統計研究所碩士論文。
8. 陳執中(2006),「台股加權指數隔月收盤價預測之研究」,國立成功大學統計學研究所碩士論文。
9. 陳國玄(2004),「人工神經網路與統計方法應用於台灣上市電子類股價指數預測與分類之研究」,國立成功大學統計學研究所碩士論文。
10. 陳國安(1999),「台灣股市電子股報酬率之預測--類神經網路與GARCH模型之應用」,東海大學管理研究所碩士論文。
11. 陳順宇(2004),迴歸分析,第4版,華泰書局。
12. 陳順宇(2005),多變量分析,第4版,華泰書局。
13. 張斐章和張麗秋(2005),類神經網路,東華書局。
14. 張斐章、張麗秋和黃浩倫(2003),類神經網路理論與實務,東華書局。
15. 黃綺年(2004),「統計方法與類神經網路運用於國內開放式股票型基金投資績效分類及投資報酬率預測之研究」,國立成功大學統計學研究所碩士論文。
16. 葉怡成(2002),應用類神經網路,儒林書局。
17. 葉怡成(2002),類神經網路模式應用與實作,儒林書局。
18. 蔡依玲(2001),「台灣股票市場報酬率之研究」,國立成功大學統計學研究所碩士論文。
19. 蔡晨瑩(2005),「臺灣50指數ETF整合型分類預測之研究」,國立成功大學統計學研究所碩士論文。
英文部份:
1. Cheng, B., Titterington, D. M. (1994), “Neural Networks: A Review from a Statistical Perspective (including discussion),” Statistical Science, Vol. 9, No. 1, pp.2-54.
2. Dash, P. K., Liew, A. C., and Rahman, S. (1995), “Peak load forecasting using a fuzzy neural network,” Electric Power Systems Research, Vol. 32, No. 1, pp. 19-23.
3. Edwards, R. and Magee, J. (1948), Technical Analysis of Stock Trends, Prentice Hall Trade.
4. Jones, C.P. (1988), “Investment: analysis and management”, Journal of Financial and Quantitative Analysis, pp. 315-326.
5. Jang, J. S. R. (1993), “ANFIS: Adaptive-network-based fuzzy inference systems,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, pp. 665-685.
6. Kaiser, H. F. (1974), “A second generation little Jiffy,” Psychometrika, Vol. 35, Iss. 4, pp. 40-415.
7. Kim, K. H., Youn, H. S., and Kang, Y. C. (2000), “Short-term load forecasting for special days in anomalous load conditions using neural networks and fuzzy inference method,” IEEE Transactions on Power Systems, Vol. 15, No. 2, pp. 559-565.
8. Neter, J., Wasserman, W., and Kutner, M. H. (1990), Applied Linear Statistical Models: Regression, Analysis of Variance, and Experimental Designs, Toppan Company.
9. Palit, A. K. and Popovic, D. (2000), “Nonlinear Combination of Forecasts Using Artificial Neural Network, Fuzzy Logic and Neuro-Fuzzy Approaches,” IEEE International Conference on Fuzzy Systems, Vol.2, pp. 566-571
10. Reilly, F. K. (1985), Investment analysis and portfolio management, Bryden Press, New York.
11. Wood, D. and Dasgupta, B. (1996), “Classfying Trend Movements in the MCSI U.S.A. Capital Index-A Comparison of Regression, ARIMA and Neural Network Methods,” Computers and Operations Research, Vol. 23, Iss. 6, pp. 611-622.
12. Wong, F. S., Wang, P. Z., Goh, T. H. , and Quek, B. K. (1992), “Fuzzy neural system for stock selection,” Financial Analysts Journal, Vol. 48, No. 1, pp. 47-53.
13. Wyckoff, P. (1970), Technical Research, The Stock Market Handbook, pp. 474.