簡易檢索 / 詳目顯示

研究生: 邱凰倩
Chiu, Huang-Chien
論文名稱: 以Core-Shell技術合成ZST粉末
Producing ZST powder by Core-Shell techniques
指導教授: 顏富士
Yen, Fu-Su
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 51
中文關鍵詞: (臉譜)技術
外文關鍵詞: Core-Shell technique
相關次數: 點閱:100下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究之目的在以core shell技術製作(Zr,Ti)沉澱物包覆在SnO2顆粒表面之共沉膠,以縮短固態反應製程製作ZST粉末時Zr、Ti、SnO2粒子間所需要的反應距離,採用此方式降低其合成溫度,於低溫合成ZST粉末。實驗中選擇尿素為沉澱劑,與起始原料Zr、Ti及SnO2混合均勻,並控制加熱、持溫條件讓尿素緩慢分解出OH-,使Zr4+、Ti4+可於SnO2表面析出形成包覆層。結果顯示:於85~90℃持溫13小時可獲得粒體約500 nm以SnO2為core,(Zr,Ti)沉澱物為shell的ZST起始粉末。
      以此方式合成之ZST起始粉末,於600℃有ZrTiO4相生成,直到800℃ SnO2可與之反應產生ZST相,而在1150℃還存在之ZrTiO4相則造成高溫生成ZST相的反應。雖於1200℃/2hr之煆燒樣品經XRD分析已無其他結晶相存在,但由TEM照片中發現仍有少量ZrTiO4相粒體存在,這可能是製程中SnO2與Zr、Ti劑量之計算誤差所造成。未來,如在SnO2個數計算與Zr、Ti用量之計量比能更精準,則有望生產單一相之ZST粉末。

     Producing Zr-Ti co-precipitate coating on the surface of SnO2 particles by core-shell technique was investigated in this study. This process reduced the reaction distance between Zr, Ti, and SnO2 particles and decreased the synthetic temperature in manufacturing ZST powders. Urea, as a precipitant, mixed homogeneously with Zr, Ti, and SnO2 particles slowly decomposed OH- to precipitate a Zr4+-Ti4+ coat on SnO2 surface by controlling heating conditions.
     The results manifested that near 500 nm ZST starting powder with Zr-Ti co-precipitate as shell and SnO2 particles as core was obtained during 85~90℃ /13hrs. ZrTiO4 phase formed at 600℃, reacting with SnO2 to form ZST phase until 800℃. ZrTiO4 phase remained at 1150℃ result in the formation of ZST at higher temperature. There is no else phases except for ZST in XRD analysis of 1200℃/2hrs sample, but detectable amounts of ZrTiO4 particles were found in TEM/EDS analyses. This phenomenon probably caused by the error in Zr, Ti stoichiometric calculation. In future, a pure ZST phase can be able to produce by precise calculation in number of SnO2 particles and Zr, Ti stoichiometry.

    目錄 摘要 Ⅰ Abstract Ⅱ 致謝 Ⅲ 目錄 Ⅳ List of Tables Ⅶ List of Figures Ⅷ 附錄 Ⅹ 第一章 緒論 1 1.1 前言 1 1.2 研究目的 3 第二章 理論基礎與前人研究 4 2.1 ZST之基本性質 4 2.1.1 ZrTiO4之結構 4 2.1.2 Zr0.8Sn0.2TiO4之結構及特性 4 2.2 主要之ZST合成法 5 2.2.1 固態法 5 2.2.2 共沉法 5 2.2.3 溶膠凝膠法 5 2.3 以Core shell法合成ZST粉末 5 2.3.1 Core shell合成理論 6 2.3.1.1 聚合作用 6 2.3.1.2 溶解析出方式 6 2.3.1.3 電荷吸引方式 6 2.3.1.4 異質成核 6 2.3.2 Core shell合成技術 6 2.3.3 SnO2-core-(Zr,Ti)沉澱物-shell之製備 8 第三章 實驗方法與步驟 14 3.1 實驗構想 14 3.2 實驗原料 14 3.3 實驗流程 15 3.3.1 SnO2的取樣及特性分析 15 3.3.1.1 SnO2顆粒之粒徑及表面電位 15 3.3.2 反應溶液的製備 15 3.3.3 ZST共沉膠的製作 16 3.4 特性分析 16 3.4.1 粒徑分佈 16 3.4.2 水溶液中之元素分析 16 3.4.3 熱差分析 16 3.4.4 粉末結晶相分析 17 3.4.5 顯微影像及結構分析 17 第四章 結果與討論 23 4.1 製作ZST core shell起始粉末之製程條件 23 4.2 ZST之生成機制 26 4.2.1 DTA熱分析 26 4.2.2 XRD及TEM觀察 26 4.3 ZST粉末之顯微觀察及結晶相分析 27 4.3.1 ZST粉末之狀態 27 4.3.2 TEM中發現少量ZrTiO4相存在 27 第五章 結論 39 參考文獻 40 Appendix I 以氨水為沉澱劑合成ZST起始粉末 43 List of Tables Table 3-1 Reagents used in this study 14 Table 3-2 The physical and chemical properties of raw materials 15 Table 4-1 The effect of different temperatures on precipitate of Zr4+、Ti4+ was observed, using urea as precipitant 25 List of Figures Fig. 2-1 Projection on (010) of the structure of ZrTiO4.The cations Zr4+ and Ti4+ occupy positions 4c of space group Pbcn 9 Fig. 2-2 (001) projection of ZrTiO4 structure:The ordered commensurate ordered structure (aord=2adis) of ZrTiO4 9 Fig. 2-3 Rietveld refined structure of Zr0.8Sn0.2TiO4.All the cations, Zr4+, Ti4+, and Sn4+ occupy positions 4c of space group Pbcn 9 Fig. 2-4 Room temperature phase diagram of ZrxTiySnzO4 ceramics (x+y+z=2).The existence range of a single phase compound ZrxTiySnzO4 is tentatively indicated by the broken line 10 Fig. 2-5 Schematic depiction of three types of chemical co-precipitation models.(a) compound (b) mixing (c) coating 11 Fig. 2-6 Solute concentration, reaction time and each step of crystalline growth for the dissolution/precipitation mechanism 12 Fig. 2-7 Change in pH by the hydrolysis of urea solution (0.5M) 13 Fig. 2-8 Change of pH with time during precipitation of Sn (Ⅳ) with urea 13 Fig. 3-1 The XRD pattern of commercial SnO2 powders 18 Fig. 3-2 a) The particle size distribution of SnO2 powders after sedimentation. It reveals that (b) The TEM image of SnO2 powder shows that SnO2 particles are nearly spherical 19 Fig. 3-3 Schematic representation of zeta potential of SnO2 particles 20 Fig. 3-4 Schematic representation of the experimental tools 21 Fig. 3-5 Flowchart of this study 22 Fig. 4-1 The schematic representation of pH values of (Zr,Ti) solution with some urea thermally treated at various durations 28 Fig. 4-2 TEM micrographs of starting solution thermally treated above 95℃ for (a)~(d) 2hrs (e,f) 3hrs, using urea as precipitant 29 Fig. 4-3 TEM micrographs of starting solution thermally treated at 85~90℃ for (a,b) 11hrs (c,d) 12hrs, using urea as precipitant 30 Fig. 4-4 TEM micrographs of starting solution thermally treated at 85~90℃ for (a)~(d) 13hrs, using urea as precipitant 31 Fig. 4-5 TEM micrographs of starting solution thermally treated at 80~85℃ for (a and b) 20hrs, using urea as precipitant. The corresponding EDS patterns are shown in c and d, respectively 32 Fig. 4-6 The DTA/TG profiles of ZST starting powders with a heating rate of 10℃/ min in air 33 Fig. 4-7 XRD patterns of calcined ZST starting powders. The heating rate was 10℃/ min 34 Fig. 4-8 TEM micrographs of examined samples thermally treated at (a and c) 600℃ for 30mins. The corresponding diffraction patterns are shown in b and d, respectively 35 Fig. 4-9 XRD patterns of calcined ZST starting powders. The heating rate was 10℃/ min 36 Fig. 4-10 SEM images (a,b) and TEM images (c,e) of examined samples calcined at 1150℃ for 2hrs. The corresponding diffraction patterns are shown in d and f, respectively 37 Fig. 4-11 TEM images of examined samples calcined at 1150℃ for (a,b) 30mins, (c,d) 2hrs, and (e,f) 1200℃ for 2hrs 38 附錄 AppendixⅡ TEM images of ZST starting powders using ammonia as precipitant 45 AppendixⅢ Element analysis of starting solution thermally treated above 95℃ for 2hrs using TEM-EDS techniques 46 AppendixⅣ Element analysis of starting solution thermally treated above 95℃ for 3hrs using TEM-EDS techniques 47 AppendixⅤ Element analysis of starting solution thermally treated at 85~90℃ for 11hrs using TEM-EDS techniques 48 AppendixⅥ Element analysis of starting solution thermally treated at 85~90℃ for 12hrs using TEM-EDS techniques 49 AppendixⅦ The DTA/TG profiles of Zr-Ti coprecipitate with a heating rate of 20℃/min in air 50 AppendixⅧ Element analysis of starting powders calcined at 1150℃ for 30 min using TEM-EDS techniques 51

    1.F. Khairulla and P.P. Phule,“Chemical Synthesis and Structure Evolution of
    Zirconium Titanate,” Mater. Sci. Eng., B12 327-336 1991.
    2.C.L. Huang and M.H. Weng,“Liquid Phase Sintering of (Zr,Sn)TiO4 Microwave
    Dielectric Ceramics,”Mater. Res. Bull., 35 1881-1888 2000.
    3.H. Tamura,“Microwave Loss Quality of (Zr0.8Sn0.2)TiO4,”J. Am. Ceram. Soc.
    Bull., 73[10] 92-95 1994.
    4.H. Tamura, T. Konoike, Y. Sakabe, and K. Wakino,“Improved High-Q Dielectric
    Resonator with Complex Perovskite Structure,”J. Am. Ceram. Soc., 57[10] 450-
    53 1974.
    5.H.M. O’Bryan and J. Thomson,“A New BaO-TiO2 Compound with Temperature
    Stable High Permittivity and Low Microwave Loss,”J. Am. Ceram. Soc., 57[10]
    450-53 1974.
    6.A.E. Mchale and R.S. Roth,“Investigation of the Phase Transition in
    ZrTiO4 and ZrTiO4-SnO2 Solid Solution,”Comm. Am. Ceram. Soc., C18-20 1983.
    7.Y. Park, Y.H. Kim, and H.G. Kim,“The Phase Transition and Microwave
    Dielectric Properties of Tin Modified Zirconium Titanate by Melting
    Process,”Mater. Sci. Eng., B40 37-41 1996.
    8.Y.C. Heiao, L. Wu, and C.C. Wei.,“Microwave Dielectric Properties of
    (ZrSn) TiO4 Cearmic,”Mater. Res. Bull., 23 1687-1692 1988.
    9.K. Wakino, K. Minai, and H. Tamura,“Microwave Characteristics of (Zr,Sn)
    TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators,”J. Am. Ceram. Soc., 67
    [4] 1984.
    10.S.X. Zhang, J.B. Li, H.Z. Zhai, and J.H. Dai,“Low Temperature Sintering
    and Dielectric Properties of (Zr0.8Sn0.2)TiO4 Microwave ceramics Using
    La2O3/BaO Additives,”Mater. Chem. Phys., 77 470-475 2002.
    11.J.W. Jang., S.Y. Cho, D.Y. Jeong, and K.S. Hong,“Preparation and
    Dielectric Properties of Low-Temperature-Sinterable (Zr0.8Sn0.2)TiO4
    Powder,”J. Am. Ceram. Soc., 81[5] 1209-1214 1998.
    12.S.I. Hirano, T. Hayashi, and A. Hattori,“Chemical Processing and Microwave
    Characteristics of (Zr,Sn)TiO4 Microwave Dielectrics,”J. Am. Ceram. Soc.,
    74[6] 1320-1324 1991.
    13.L.W. Coughanour, R.S. Roth, and V.A. Deprosse,“Phase Equilibrium Relations
    in the Systems Lime-Titania and Zirconia-Titania,”J. Res. Nat. Bur.
    Stand., 52[1] 37-42 1954.
    14.R.E. Newnham,“Crystal Structure of ZrTiO4,”J. Am. Ceram. Soc., 50[4] 216
    1967.
    15.R.W. Lynch and B. Morosin,“Thermal Expansion, Compressibility, and
    Polymorphism in Hafnium and Zirconium Titanates,”J. Am. Ceram. Soc., 55[8]
    409-413 1972.
    16.R. Kudesia, R.L. Snyder, R.A. Condrate, Sr., and A.E. Mchale,“Structural
    Study of Zr0.8Sn0.2TiO4,”J. Phys. Chem. Solids, 54[6] 671-684 1993.
    17.Y. Park, Y. Kim, and H.G. Kim,“Structural-Phase Transition and Electrical
    Conductivity in Tin-Modified Zirconium Titanate,”Solid State Ionics, 90
    245-249 1996.
    18.A.E. Mchale and R.S. Roth,“Low-Temperature Phase Relationships in the
    System ZrO2-TiO2,”J. Am. Ceram. Soc., 69[11] 827-832 1986.
    19.A. Bianco, M. Paci, and R. Freer,“Zirconium Titanate : from Polymeric
    Precursors to Bulk Ceramics,”J. Euro. Ceram. Soc., 18 1235-1243 1998.
    20.R. Christoffersen, P.K. Davies, and X. Wei,“Effect of Sn Substitution on
    Cation Ordering on (Zr1-xSnx)TiO4 Microwave Dielectric Ceramics,”J. Am.
    Ceram. Soc., 77[6] 1441-1450 1994.
    21.G. Wolfram and H.E. Goebel,“Existence Range, Structural and Dielectric
    Properties of ZrxTiySnzO4 Ceramics (x+y+z=2),”Mater. Res. Bull., 16[11]
    1455-1463 1981.
    22.Y. Park and Y. Kim,“Order-Disorder Transition of Tin-Modified Zirconium
    Titanate,”Mater. Res. Bull., 31[1] 7-15 1996.
    23.D. Houivet, J.E. Fallah, and J.-M. Haussonne,“Phases in La2O3 and NiO
    Doped (Zr,Sn)TiO4 Microwave Dielectric Ceramics,”J. Euro. Ceram. Soc.,
    19 1095-1099 1999.
    24.C.J. Brinker and G.W. Scherer, Sol-Gel Science, Academic Press Inc., 1990.
    25.趙承琛編著,界面科學基礎,復文書局,中華民國89年10月。
    26.A. Banerjee, T.R. Ramamohan, and M.J. Patni,“Smart Technique for
    Fabrication of Zinc Oxide Varistor,”Mater. Res. Bull., 36 1259-1267 2001.
    27.D.J. Shaw, Introduction to colloid and surface chemistry, Butterworth-
    Heinemann, Oxford, 4th ed. 1992.
    28.R.J. Hunter, Introduction to Modern Colloid Science, Oxford University
    Press Inc., New York, 1993.
    29.W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, John
    Wiley & Sons, New York, 2nd ed. 1976.
    30.向性一編著,陶瓷製程講義,中華民國92年2月。
    31.Y. Arai, Chemistry of Powder Production, Chapman & Hall, 1996.
    32.O. Yamaguchi and H. Mogi,“Formation of Zirconia Titanate Solid Solution
    from Alkoxides,”J. Am. Ceram. Soc., 72[6] 1065-1066 1989.
    33.李珮慈,以SnO2-core、(Zr+Ti)-shell技術合成Zr.8Sn.2TiO4的反應機制,國立成功
    大學資源工程所,碩士論文,中華民國92年7月。

    下載圖示
    2005-02-02公開
    QR CODE