簡易檢索 / 詳目顯示

研究生: 王守誠
Wang, Shou-Cheng
論文名稱: 澎湖群島斜輝石偉晶之化學特性在岩漿演化之應用
Chemical characteristics of clinopyroxene megacrysts from the Penghu Islands: Implications on magma evolution
指導教授: 楊懷仁
Yang, Huai-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 104
中文關鍵詞: 斜輝石pMELTS鍶釹同位素結晶分化偉晶
外文關鍵詞: pMELTS , Sr-Nd isotope, crystal fractionation, megacryst, clinopyroxene
相關次數: 點閱:74下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   大陸鹼性玄武岩內含高壓相斜輝石偉晶,其成分變化是岩漿在深處演化最好的記錄器,本研究藉由澎湖群島煙墩山、查坡島及望安的斜輝石偉晶,分析其主要元素及微量元素含量與Sr與Nd同位素比值,進而探討澎湖地區玄武質岩漿的演化過程。Ca、Fe、Al、Ti、Na在斜輝石,隨著Mg、Si的降低而增加,符合pMELTS程式模擬結果,因而斜輝石偉晶為鹼性玄武質岩漿在等壓降溫下的結晶顆粒,望安斜輝石偉晶高Al、高Na的特徵代表結晶分化後期的產物。經Putirka之斜輝石飽和溫壓計算,鹼性玄武岩成分在9 kbar才結晶出斜輝石,與此區域莫荷面之深度符合(~30 km)。

      Sr、Nd同位素分析結果顯示斜輝石與圍岩同源,但圍岩為母岩漿及未分化原始岩漿的混合體,可由REE之分配係數、Fe-Mg平衡常數等結果確認。較低的Nd同位素比值與LILE及Nb、Ta的富集表示HIMU可能為隱沒之古老海洋地殼物質,經過小比例部份熔融形成,此訊號出現在斜輝石之邊緣與長石之核部。

      以pMELTS程式、熱平衡方程式、偉晶成分變化可計算偉晶之結晶速率約為10-8 cm/sec,數十立方公分的偉晶約在100~1年內形成,而岩漿庫結晶分化與裂隙再活化的時間尺度類似,約102年。斜輝石偉晶的形成可能與底侵作用(underplating)及裂隙再活化有關,暗示地殼的應力演化可控制岩漿結晶分化的程度。斜輝石偉晶或斑晶之地球化學研究有助於探討板內玄武岩(Intraplate basalt)或大型火成岩域(LIP)在莫荷面的演化形式與條件。

      Compositional variations of clinopyroxene megacrysts occurred in continental alkali basalts provide constraints on magma evolutions in deep interior of the earth. In this study, clinopyroxene megacrysts sampled from Penghu islands in Taiwan Strait were analyzed for major and trace element concentration as well as Sr and Nd isotopic ratios to investigate the evolution history of the basaltic magma forming Penghu islands. The Mg and Si contents of the analyzed megacrysts decrease with increasing Ca, Fe, Al, Ti and Na contents, consistent with the results modeled from pMELTS, indicating that these clinopyroxene megacrysts were formed by isobaric crystallization. Samples from Wang-an island contain high Al and Nd concentrations representing products of late-stage crystallization. Based on the thermobarometer of Putirka et al. (1996), alkali basalts will not crystallize clinopyroxene until 9 kbar, consistent with the depth of Moho in the sampling locality.

      The Sr and Nd isotopic compositions of the clinopyroxene megacrysts and their host lavas indicate derivation from a common source. However, the REE partitioning coefficients and Fe-Mg exchange coefficient further indicate that megacrysts and their host lavas were not in chemical equilibrium. The low 143Nd/144Nd isotopic ratios accompanied by enrichments in LILE, Nb and Ta occurring in the rims of the analyzed clinopyroxene megacrysts and the cores of the analyzed plagioclase megacrysts might reflect the results of small degrees of partial melting from recycled oceanic materials.

      The crystal grow rate of clinopyroxene megacrysts, calculated on the basis of heat balance, pMELTS and correlation between mineral volumes and crystal temperature, is in the order of 10-8 cm/sec. The time scale of megacryst grow is about 100~1 years, comparable to that required for high degree crystal fractionation and hydraulic fracture reactivation (~102 years), implying crustal stress might control the extent of crystal fractionation. The results from this study confirm that the geochemical features of clinopyroxene megacrysts and phenocrysts can reveal the evolution history of intraplate basalts.

    總目錄 摘要 I Abstract II 致謝 IV 總目錄 VI 表目錄 IX 圖目錄 X 詞彙縮寫及翻譯: XI =章節目錄= 第一章 緒論 1 1.1 前言 1 1.2 前人研究 4 1.3 斜輝石結晶構造與化學組成 8 1.3.1 斜輝石結構介紹 8 1.3.2 斜輝石偉晶的內含物 12 1.3.3 全球的斜輝石偉晶成分統計及分類 12 1.3.4 斜輝石偉晶與斑晶的成分差異 15 1.4 偉晶產地地質背景概述 19 1.4.1 澎湖玄武岩年代及地球化學特徵 19 1.4.2 岩漿成因與岩石圈構造活動 20 第二章 採樣、標本處理與實驗步驟 22 2.1 採樣 22 2.2 樣本描述 26 2.3 標本處理 27 2.3.1 樣品粉末製備 27 2.3.2 電子顯微分析試片製備 27 2.4 實驗分析步驟 27 2.4.1 主要元素分析 27 2.4.1.1 礦物標本 27 2.4.1.2 全岩標本 28 2.4.2 微量元素 28 2.4.3 Sr與Nd同位素 29 2.4.3.1 淋溶步驟: 29 2.4.3.2 樣本消化步驟: 30 2.4.3.3 管柱層析步驟: 30 2.4.3.4 質譜儀分析條件: 32 第三章 分析結果與數據處理 33 3.1 斜輝石與玄武岩主要元素含量 33 3.2 微量元素分析結果 38 3.3 Sr與Nd同位素分析結果 42 第四章 討論 45 4.1 斜輝石偉晶與其玄武岩圍岩之關係 45 4.1.1 評估斜輝石與圍岩是否同源: Sr-Nd同位素的制約 45 4.1.2 評估斜輝石與圍岩是否達元素平衡:微量元素 49 4.1.3 主要元素是否達到平衡 50 4.1.4 圍岩來源與噴發機制 51 4.2 影響斜輝石偉晶主要元素變化趨勢之參數 52 4.2.1 主要元素變化趨勢 52 4.2.2 pMELTS程式介紹及使用方法 55 4.2.3 模擬結果 55 4.2.4 壓力或溫度的控制? 58 4.2.5 含水量對結晶分化的影響 60 4.2.6 結晶動力學對平衡條件的制約 61 4.3 從物理化學條件推估莫荷面對岩漿演化的影響 61 4.3.1 斜輝石成分與地質溫壓計計算 61 4.3.2 稀土元素分配係數制約 65 4.3.3 岩石圈動力學上的可能機制推論 68 4.4 從偉晶結晶速率探知岩漿降溫的時間及空間尺度 68 4.4.1 熱平衡模型參數設定及計算 69 4.4.2 斜輝石溫度估計 70 4.4.3 結晶速率及時間尺度計算 72 4.5 HIMU成分混入的證據 76 4.5.1 Sr與Nd同位素分佈圖內的垂直變化 76 4.5.2 核部與邊緣的Nd同位素比值變化 77 4.5.3 微量元素在核部及邊緣的差異 78 4.5.4 Sr、Nd同位素演化趨勢的差異及時間尺度 79 4.6 結晶分化程度之控制機制 80 第五章 結論 82 5.1 總結 82 5.2 結論示意圖 83 中文參考資料 85 英文參考資料 86 照片1~2 97 照片3~4 98 照片5~6 99 附錄一:斜輝石分子是及端元計算程序 100 附錄二:pMELTS程式使用 103

    中文參考資料
    臧啟家、趙雲龍:遼寧寬甸、山東蓬萊幔源巨晶中隕硫鐵的研究。華東地質學院院報第九號第二卷,97-103頁(1986)
    余樹禎、張子岳、楊宏儀,等:澎湖玄武岩中輝石偉晶之結構與地質意義。中國地質學會專刊第八號,73-85頁(1987)
    池際尚主編:中國東部新生代玄武岩及上地幔研究(附金伯利岩)。中國地質大學出版社,共277頁(1987)
    陳淑珍:台灣西部新第三紀玄武岩之同位素及微量元素地球化學。國立台灣大學地質學研究所碩士論文,共80頁(1988)
    莊文星:台灣新生代晚期火山岩之定年與地球化學研究,國立台灣大學海洋研究所博士論文,共231頁(1988)
    龔慧貞:澎湖玄武岩中鈦鐵氧化物之研究及其地質意義。國立成功大學礦冶及材料科學研究所碩士論文,共64頁(1989)
    解廣轟、黃婉康、王俊文,等:遼寧寬甸黃椅山玄武岩REE及Sr、Nd、Pb同位素組成研究。中國科學B7,752-758頁(1989)
    鍾孫霖:台灣西部鹼性玄武岩中偉晶與包體之地球化學研究兼論中國東南沿海晚新生代板塊內部玄武岩的岩石成因。國立台灣大學地質學研究所博士論文,共183頁(1990)
    劉若新、陳文寄、孫建中,等:中國新生代火山岩的K-Ar年代與構造環境。出自劉若新:中國新生代火山岩年代學與地球化學。地質出版社。1-43頁(1992)
    李寄嵎:澎湖地區玄武岩類與福建地區基性脈岩之定年學與地球化學兼論中生代晚期以來中國東南地函之演化。國立台灣大學地質學研究所博士論文,共226頁(1994)
    何恭算:華南地區新生代玄武岩之岩石學與地球化學研究。國立台灣大學地質學研究所博士論文,共580頁(1998)
    王心怡:台灣西部玄武岩中斜輝石偉晶之晶體結構及其地質意義。國立成功大學地球科學研究所碩士論文,共75頁(1998)
    陳旺慶:山東昌樂與臺灣關西含巨晶和超鎂鐵岩包體玄武岩的岩石學特征對比及相關藍寶石礦研究。中國地質大學碩士學位論文,共58頁(2001)
    呂慶田、侯增謙、楊竹森、史大年,等:長江中下游地區的底侵作用及動力學演化模式:來自地球物理資料的約束。SCIENCE IN CHINA SERIES D:EARTH SCIENCES(中國科學D輯)34,783-794頁(2004)
    樊祺誠、張宏福、隋建立、翟明國、孫謙、李霓,等:岩漿底侵作用與漢諾壩現今殼-幔邊界組成—捕虜體岩石學與地球化學證據。SCIENCE IN CHINA SERIES D:EARTH SCIENCES(中國科學D輯)35,1-14頁(2005)
    賴逸真:台灣澎湖群島岩石圈地函之熔融與交代換質作用,國立成功大學地球科學研究所碩士論文,共117頁(2005)
    英文參考資料
    Anderson, D.L. (2001). Top-Down Tectonics?: Science 293, p. 2016-2018
    Asimow, P.D. and Langmuir, C.H. (2003). The importance of water to oceanic mantle melting regimes: Nature 421, p. 815-820
    Asimow, P.D., Dixon, J.E. and Langmuir, C.H. (2004). A hydrous melting and fractionation model for mid-ocean ridge basalts: Application to the Mid-Atlantic Ridge near the Azores: Geochemistry, Geophysics, Geosystems 5, Q01E16, doi:10.1029/2003GC000568
    Barfod, D. N., Ballentine, C. J., Halliday, A. N. and Fitton, J. G. (1999). Noble gases in the Cameroon line and the He, Ne, and Ar isotopic composition of high mu (HIMU) mantle: Journal of Geophysical Research (B1)104, p. 29509–29527.
    Blundy, J. and Wood, B. (2003). Partitioning of trace elements between crystals and melts: Earth and Planetary Sciences Letters 210, p. 383-397
    Bondi, L., Morten, L., Nimis, P., Rossi, P.L. and Tranne, C.A. (2002). Megacrysts and mafic-ultramafic xenolith-bearing ignimbrites from Sirwa Volcano, Morocco: phase petrology and Thermobarometry: Mineralogy and Petrology 75, p. 230-221
    Brandeis, G. and Jaupart, C. (1987). Crystal sizes in intrusions of different dimensions: Constraints on the cooling regime and crystallization kinetics, in book titled: Magmatic Processes: Physicochemical Principles. ed. Mysen, B. O., The Geochemical Society, Special Publication No. 1, p. 307-318
    Burke, W.H., Denison, R.E., Hetherington, E.A., Koepnick, R.B., Nelson, N.F., and Otto, J.B. (1982). Variation of seawater 87Sr/86Sr throughout Phanerozoic time: Geology 10, p. 516-519
    Cameron, M. and Papike, J.J. (1981). Structural and chemical variations in pyroxenes: American Mineralogist 66, p. 1-50
    Can -Tapia E. and Walker G.P.L. (2004). Global aspects of volcanism: the perspectives of “plate tectonics” and “volcanic systems”: Earth-Sciences Reviews 66, p. 163-182
    Cashman, K.V. (1990). Textural constraints on the kinetics of crystallization of igneous rocks: Reviews in Mineralogy and Geochemistry 24, p. 259-314
    Chapman, C.A. (1976). Structural evolution of the White Mountain magma series, in Lyons, P., and Brownlow, A., eds., Studies in New England Geology: Geological Society of America Memoir 146, p. 281-300
    Chen, C.H., Yang, H.Y. and Tsai, C.L. (1981). The high-pressure megacrysts in the basaltic rocks of Penghu islands, Taiwan: Proceedings of the National Science Council A 5, p. 75-84
    Chen, C.H., Chung, S.L. and Lee, C.Y. (1987). Genesis of Neogene continental margin alkali basalts and tholeiites in western Taiwan and the significance of high-pressure megacrysts and lherzolite inclusion: Acta Geologica Taiwanica 25, p. 111-132
    Corti, G., Bonini, M., Innocenti, F., Manetti, P., and Mulugeta, G. (2001). Centrifuge models simulating magma emplacement during oblique rifting: Journal of Geodynamics 31, p. 557-576
    Choi, S.H., Kwon, S.T., Mukasa, S.B., and Sagong, H. (2005). Sr-Nd-Pb isotope and trace element systematics of mantle xenoliths from Late Cenozoic lavas, South Korea : Chemical Geology, in press
    Chung, S.L. and Chen, C.H. (1990). Origin of clinopyroxene and amphibole megacrysts in the alkali basaltic rocks from western Taiwan as constrained by REE geochemistry: Proceedings of the Geological Society of China 33. p. 177-204
    Chung, S.L., Sun, S.S., Tu, K., Chen, C.H. and Lee, C.Y. (1994). Late Cenozoic basaltic volcanism around the Taiwan Strait SE China: Product of lithosphere-asthenosphere interaction during continental extension: Chemical Geology 112, p. 1-20
    Chung, S.L., Yang, T. Frank., Chen, S.J., Chen, C.H., Lee T. and Chen, C.H. (1995). Sr-Nd isotope compositions of high-pressure megacrysts and a lherzolite inclusion in alkali basalts from western Taiwan: Journal of the Geological Society of China 38, p. 15-24
    Chung, S.L., Jahn, B.M., Chen, S.J., Lee, T., and Chen, C.H. (1995b). Miocene basalts in northwestern Taiwan: Evidence for EM-type mantle sources in the continental lithosphere: Geochimica et Cosmochimica Acta 59, p. 549-555
    Chung, S.H. and Yang, H.Y. (1990). A preliminary study of megacrysts in basaltic rocks from Longwangshan, Penghu Islands: Cheng Kung Journal, Science, Engineering & Medicine Section 25, p. 11-35
    Dal Negro, A., Carbonin, S., Molin, G.M., Cundari, A. and Piccirillo, E.M. (1982). Intracrystalline cation distribution in natural clinopyroxenes of tholeiitic, transitional, and alkaline basaltic rocks. In: Saxena, Berlin, Heidelberg, New York 2, p. 117-150
    Dal Negro, A., Carbonin, S., Domeneghetti, C., Molin, G.M., Cundari, A. and Piccirillo, E.M. (1984). Crystal chemistry and evolution of the clinopyroxene in a suite of high pressure ultramafic nodules from the Newer Volcanics of Victoria, Australia: Contributions to Mineralogy and Petrology 86, p. 221-229
    Dal Negro, A., Manoli, S., Secco, L. and Piccirillo, E.M. (1989) Megacrystic clinopyroxenes from Victoria (Australia): Crystal chemical comparisons of pyroxenes from high and low pressure regimes: European Journal of Mineralogy 1, p.105-121
    Davidson, J.P. and Tepley III, F.J. (1997). Recharge in volcanic systems: Evidence from isotope profiles of phenocrysts: Science 275, p. 826-829
    Deer, W.A., Howie, R.A. and Zussman, J. (1978) Rock-Forming Minerals 2A, Second Edition, Single Chain Silivate. John Wiley, New York
    Deng, J.F., Mo, X.X., Zhao, H.L., Wu, Z.X., Luo, Z.H. and Su, S.G. (2004). A new model for the dynamic evolution of Chinese lithosphere:‘continental root-plume tectonics’: Earth-Science Reviews 65, p. 223-275
    Doglioni, C., Green, D. and Mongelli, F. (2004). On the shallow origin of hotspots and the westward drift of the lithosphere, in book titled: “Melt Anomalies: Their Nature and Origin”. eds. Foulgar, G. R., Presnall, D. C., Natland, J. H. and Anderson, D. L., GSA Penrose Book, In press
    Eggins, S.M., Woodhead, J.D., Kinsley, L.P.J., Mortimer, G.E., Sylvester, P., McCulloch, M.T., Hergt, J.M. and Handler, M.R. (1997). A simple method for the precise determination of ≧40 trace elements in geological samples by ICPMS using enriched isotope internal standardization: Chemical Geology 134, p. 311-326
    Elkins-Tanton L.T. (2004) Continental magmatism caused by lithospheric delamination, submitted to upcoming book Melting anomalies: Their Nature and Origin, eds. G.R. Foulger, J.H. Natland, D.C. Presnall, D.L. Anderson, Geological Society of America
    Gaetani, G.A. and Grove, T.L. (1995). Partitioning of rare-earth elements between clinopyroxene and silicate melt: Crystal - chemical controls: Geochimica et Cosmochimica Acta 59, p. 1951-1962
    Gallagher, K. and Hawkesworth, C. (1992). Dehydration melting and the generation of continental flood basalts. Nature 358, p. 57-59
    Ghiorso, M.S. and Sack, R.O. (1995). Chemical Mass Transfer in Magmatic Processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures: Contributions to Mineralogy and Petrology 119, p. 197-212
    Ghiorso, M.S., Hirschmann, M.M., Reiners, P.W. and Kress, V.C.III (2002). The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa: Geochemistry, Geophysics, Geosystems 3, paper 2001GC000217.
    Greenough, J.D., Lee, C.Y., and Fryer, B.J. (1999). Evidence for volatile-influenced differentiation in a layered alkali basalt flow, Penghu Islands, Taiwan: Bulletin of Volcanology 60, p. 412-424
    Grover, J.E. (1980). Thermodynamics of pyroxenes. In: Reviews in Mineralogy 7, Pyroxenes, ed. Prewitt, C. T., Washington: Mineralogical Society of America, p. 341-417
    Haggerty, S.E. (1995). Upper mantle mineralogy: Journal of Geodynamics 20, p. 331-364
    Hanyu, T. and Nakamura, E. (2000). Constraints on HIMU and EM1 by Sr and Nd isotope re-examined: Earth Planet Space 52, p. 61-72
    Hart, S.R. and Dunn, T. (1993). Experimental cpx/melt partitioning of 24 trace elements. Contributions to Mineralogy and Petrology 113: 1-8.
    Harte, B., Hunter, R.H. and Kinny, R.D. (1993). Melt geometry, movement and crystallization, in relation to mantle dykes, veins and metasomatism: Philosophical Transactions of the Royal Society of London A 342, p. 1-21
    Hawkesworth, C.J., Blake, S., Evans, P., Hughes, R., MacDonald, R., Thomas, L.E., Turner, S.P. and Zellmer, G. (2000). Time scales of crystal fractionation in magma chambers-Integrating physical isotopic and geochemical perspectives: Journal of Petrology 41, p. 991-1006
    Hay, D.E. and Wendlandt, R.F. (1995). The origin of Kenya rift plateau-type flood phonolites: results of high-pressure/high-temerature experiments in the systems phonolite-H2O and phonolite-H2O-CO2: Journal of Geophysical Research 100, p. 401-410
    Hegner, E., Walter, H.J. and Satir, M. (1995). Pb-Sr-Nd isotopic compositions and trace element geochemistry of megacrysts and melilitites from the Tertiary Urach volcanic field: source composition of small volume melts inder SW Germany: Contributions to Mineralogy and Petrology 122, p. 322-33
    Hermann, J., Mntener, O. and Gnther, D. (2001). Differentiation of mafic magma in a continental crust-to-mantle transition zone: Journal of Petrology 42, p. 189-206
    Herzberg, C.T., Fyfe, W.S. and Carr, M.J. (1983). Density constraints on the formation of the continental Moho and crust: Contributions to Mineralogy and Petrology 84, p. 1-5
    Ho, K.S., Chen, J.C., Smith, A.D. and Juang, W.S. (2000). Petrogenesis of two groups of pyroxenite from Tungchihsu, Penghu Islands, Taiwan Strait: implications for mantle metasomatism beneath SE China: Chemical Geology 167, p. 355-372
    Ho, K.S., Chen, J.C., Lo, C.H., and Zhao, H.L. (2003). 40Ar-39Ar dating and geochemical characteristics of late Cenozoic basaltic rocks from the Zhejiang-Fujian region, SE China: eruption ages, magma evolution and petrogenesis: Chemical Geology 197, p. 287-318
    Hofmann, A.W. and White, W.M. (1982). Mantle plumes from ancient oceanic crust: Earth and Planetary Science Letters 57, p. 421-436
    Hsu, L.C. (1961). Basaltic rocks from Kuanhsi-Chutung district, northern Taiwan: Acta Geologica Taiwanica 9, p. 47-78
    Ichimura, T., (1943). Zircon and corundum deposits in the Mabutoku-Mafuku district, Sintiku Prefecture, Taiwan: Men. Fac. Sci. Taihouku Imp. Univ. 1, p. 1-22
    Ikeda, Y., Nagao, K., and Kagami, H. (2001). Effect of recycled materials involved in a mantle source beneath the southwest Japan arc region: evidence from noble gas, Sr, and Nd isotopic systematics: Chemical Geology 175, p. 509-522
    Ionov, D. (1998). Trace element composition of mantle-derived carbonates and coexisting phases in peridotite xenoliths from alkali basalt: Journal of Petrology 39, p. 1931-1941
    Irving, A.J. and Frey, F.A. (1984). Trace element abundances in megacrysts and their host basalts: Constraints on partition coefficients and megacryst genesis: Geochimica et Cosmochimica Acta 48, p. 1201-1221
    Johnson, K.T.M. (1998). Experimental determination of partition coefficients for rare Earth and high-field-strength elements between clinopyroxene, garnet and basaltic melt at high pressures: Contributions to Mineralogy and Petrology 133, p. 60-68
    Juang, W.S., and Chen, J.C. (1992). Geochronology and geochemistry of Penghu basalts, Taiwan Strait and their tectonic significance: Journal of Southeast Asian Earth Science 7, p. 185-193
    Juang, W.S. (1996). Geochronology and geochemistry of basalts in the western foothills, Taiwan: Bulletin of National Museum of Natural Science 7, p. 45-98
    Juang, W.S., and Chen, J.C. (1999). The nature and origin of Penghu basalt: a review: Bulletin of the Central Geological Survey. No. 12, p. 147-200
    Jung, S. and Hoernes, S. (2000). The major- and trace-element and isotope (Sr, Nd, O) geochemistry of Cenozoic alkaline rift-type volcanic rocks from the Rhon area (central Germany): petrology, mantle source characteristics and implications for asthenosphere-lithosphere interactions: Journal of Volcanology and Geothermal Research 99, p. 27-53
    Kinzler, R.J. (1997). Melting of mantle peridotite at pressure approaching the spinel to garnet transition: application to mid-ocean ridge petrogenesis: Journal of Geophysical Research 102, p. 853-874
    Kushiro, I. (1960). Si-Al relation in clinopyroxene from igneous rocks: American Journal of Science 258, p 548-554
    Li, Z.X. (1998). Tectonic evolution of the major East Asian lithospheric blocks since mid-Proterozoic – a synthesis. In: F.J. Martin, S. L. Chung, C.H. Lo and T. Y. Lee (eds), Mantle Dynamics and Plate Interactions in East Asia, AGU Geodynamics Series 27, American Geophysical Union, Washington, D.C., p. 221-243
    Liotard, J.M., Briot, D., and Boivin, P. (1988). Petrological and geochemical relationships between pyroxene megacrysts and associated alkali-basalts from Massif Central(France): Contributions to Mineralogy and Petrology 98, p. 81-90
    Litasov, K.D., Yu, D., Mekhonoshin, A.S., and Mal’kovets, V.G. (1999). Trace-Element Chemistry and Petrogenesis of Peridotite and Pyroxenite Xenoliths from Pliocene Basanites of the Dzhilinda River, Vitim Volcanic Field: Ninth Annual V. M. Goldschmidt Conference [#7097]
    Linsley, D.H. (1983). Pyroxene Thermometry: American Mineralogist 68, p. 477-493
    Loucks, R.R. (1990). Discrimination of ophiolitic from nonophiolitic ultramafic– mafic allochthons in orogenic belts by Al/Ti ratio in clinopyroxene: Geology, 18, p. 346-349
    Menzies, M.A., Halliday, A.N., Palacz, Z., Hunter, R.H., Upton, B.G.J., Aspen, P. and Hawkesworth, C.J. (1987). Evidence from mantle xenoliths for an enriched lithospheric keel under the Outer Hebrides: Nature 325, p. 44-47
    Mohammad, R.G. and Eric, A.K.M. (2000). Geochemistry of pyroxene inclusions from the Warrumbungle Volcano, New South Wales, Australia. American Mineralogist 85, p. 1349-1367
    Mooney, W.D., Laske G. and Guy, M.T. (1998). CRUST 5.1: A global crustal model at 5°×5°: Journal of Geophysical Research 103(B1), p. 727-748
    Morimoto, N. (1988). Nomenclature of pyroxenes: Mineralogical Magazine 52, p. 535-550
    Nasir, S. (1995). Cr-poor megacrysts from the Shamah volcanic field, northwestern part of the Arabian Plate: Journal of African Earth Sciences 21, p. 349-357
    Nimis, P. (1995). A clinopyroxene geobarometer for basaltic systems based on crystal - structure modeling: Contributions to Mineralogy and Petrology 121, p. 115-125
    Nimis, P. and Ulmar, P. (1998). Clinopyroxene geobarometry of magmatic rocks: Part 1. An expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems: Contributions to Mineralogy and Petrology 133, p. 314-327
    Nimis, P. (1999). Clinopyroxene geobarometry of magmatic rocks, Part 2: Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems. Contributions to Mineralogy and Petrology 135, p. 62-74
    Nixon, P.H., Rogers, N.W., Gibson, I.L., and Grey A. (1981). Depleted and fertile mantle xenoliths from southern African kimberlites. Annual Review of Earth and Planetary Sciences 9, p. 285-309
    O’Reilly, S.Y., and Griffin, W.L. (1987). Eastern Australia-4000 kilimeters of mantle samples. In Mantle xenoliths, Nixon P.H. (ed.) John Wiley & Sons. p. 267-280
    Pearson, D.G. and Nowell, G.M. (2002). The continental lithospheric mantle: characteristics and significance as a mantle reservoir: Philosophical Transactions of the Royal Society of London A 360, p. 2383-2410
    Pertermann, M. and Hirschmann, M.M. (2003). Anhydrous partial melting experiments on MORB-like eclogite:phase relations, Phase compositions and mineral/melt partitioning of major elements at 2-3 GPa: Journal of Petrology 44, p. 2173-2201
    Poldervaart, A. and Hess, H.H. (1951). Pyroxenes in the crystallization of basaltic magmas: Journal of Geology 59, p. 472–489
    Putirka, K., Johnson, M., Kinzler, R. and Walker, D. (1996). Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0-30 kbar: Contributions to Mineralogy and Petrology 123, p. 92 - 108.
    Putirka, K. (1997). Magma transport at Hawaii: inferences from igneous thermobarometry: Geology 25, p. 69-72
    Putirka, K. (1999). Clinopyroxene + liquid equilibrium to 100 kbar and 2450 K: Contributions to Mineralogy and Petrology 135, p. 151-163
    Putirka, K., Mikaelian, H., Ryerson, F., and Shaw, H. (2003). New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho: American Mineralogist 88, p. 1542-1554
    Rankenburg, K., Lassiter, J.C. and Brey, G. (2004). Origin of megacrysts in volcanic rocks of the Cameroon volcanic chain-constraints on magma genesis and crustal contamination: Contributions to Mineralogy and Petrology 147, p. 129 – 144
    Reay, A., Chappell, D., and Garden, B. (2002). A new garnet-bearing mineral breccia from North Otago, New Zealand: New Zealnad Jounal of Geology & Geophysics 45, p. 461-466
    Reiners, P.W. (2002). Temporal–compositional trends in intraplate basalt eruptions: implications for mantle heterogeneity and melting processes: Geochemistry Geophysics Geosystems 3(2), paper 2001GC000250
    Ren, J., Tamaki, K., Li, S. and Zhang, J. (2002). Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas: Tectonophysics 344, p. 175-205
    Ruppel, C. (1995). Extensional processes in continental lithosphere (review paper for AGU's 75th anniversary): Journal of Geophysical Research 100, p. 24,187-24,216
    Sachs, P.M. and Hansteen,T.H. (2000). Pleistocene underplating and metasomatism of the lower continental crust: a xenolith study: Journal of Petrology 41, p. 331-356
    Sack, R.O. and Ghiorso, M.S. (1994). Thermodynamics of multicomponent pyroxene: I. Formulation of a general model: Contributions to Mineralogy and Petrology 116, p. 277-286
    Shannon, R.D. (1976). Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides: Acta Cryst A32, p 751-767
    Shao, J.A. (2002). Discovery of orderly orbicular structures in megacrystalline augite: Acta Petrologica Sinica 18, p. 126
    Shau, Y.H. and Yang, H.Y. (1987). Petrology of basaltic rocks from Junghua, Taoyuanhsien, northern Taiwan: Proceedings of Geological Society of China 30, p. 58-82
    Shaw, C.S.J. and Eyzaguirre, J. (2000). Origin of megacrysts in the mafic alkaline lavas of the West Eifel volcanic field, Germany: Lithos 50, p. 75-95
    Smith, A.D. and Huang, L.Y. (1997). The use of extraction chromatographic materials in procedures for the isotopic analysis of Neodymium and Strontium in rocks by thermal ionization mass spectrometry: Cheng Kung Journal, Science, Engineering & Medicine Section 32, p. 1-10
    Smith, A.D. and Lewis, C. (1999). The planet beyond the plume hypothesis: Earth-Science Reviews 48, p. 135-182
    Spera, F.J. (2000). Physical properties of magma. In: Sigurdsson, H. et al. (eds) Encyclopedia of Volcanoes. New York: Academic Press, p. 171-190
    Sun, S.S. and McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Magmatism in the ocean basins. Saunders, A.D. and Norry, M.J. (Editors), Geological Society of London, London. p. 313-345
    Takeda, H. (1972). Crystallographic studies of coexisting aluminum orthopyroxene and augite of high pressure origin: Journal of Geophysical Research 77, p. 5798-5811
    Tatsumoto, M. and Nakamura, Y. (1991). DUPAL anomaly in the Sea of Japan: Pb, Nd, and Sr isotopic variations at the eastern Eurasian continental margin: Geochimica et Cosmochimica Acta 55, p. 3697-3708
    Thompson, R.N. (1974). Some high-pressure pyroxenes: Mineralogical Magazine 39, p. 768-787
    Trk, K., Bali, E., Szab, Cs., and Szakll, J. A., (2003). Sr-barite droplets associated with sulfide blebs in clinopyroxene megacrysts from basaltic tuff (Szentbkklla, Western Hungary): Lithos 66, p. 275-289
    Tsai, C.L. (1978). Ultramafic inclusions and high pressure megacrysts in alkaline olivine basalt from Mawutu, Kuanhsi, northern Taiwan: Proceedings of Geological Society of China 21, p. 67-79
    Tsai, C.L., Chen, C.H. and Yang, H.Y. (1982). Calcite nodule and high pressure megacrysts in the basaltic pyroclastics from Mafu, northern Taiwan: Acta Geologica Taiwanica 21, p. 81-91
    Van Orman, J.A., Grove, T.L., and Shimizu, N. (2001). Rare earth element diffusion in diopside: Influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates: Contributions to Mineralogy and Petrology 141, p. 687-703
    van Wyk de Vries, B. and Merie, O. (1998). Extension induced by volcanic loading in regional strike-slip zones: Geology 26, p. 983-986
    Walker, F. (1940). Differentiation of the Palisade diabase, New Jersey: Bull. Geol. Soc. Amer. 51, p. 1059-1106
    Wang, K.L., O’Reilly, S.Y., Griffin, W.L., Chung, S.L., and Juang, W.S. (2003). Geochemical characteristics of mantle xenoliths from Penghu, Taiwan Straits, SE Asian margin: 8th International Kimberlite Conference, Program with Abstract, p. 139-142
    Witt-Eickschen, G., Seck, H.A., Mezger, K., Eggins, S.M., and Altherr, R. (2003). Lithospheric mantle evolution beneath the Eifel (Germany): Constraints from Sr–Nd–Pb Isotopes and trace element abundances in spinel peridotite and pyroxenite xenoliths: Journal of Petrology 44, p. 1077-1095
    Wood, B.J. and Blundy, J.D. (1997). A predictive model for rare Earth element partitioning between clinopyroxene and anhydrous silicate melt: Contributions to Mineralogy and Petrology 129, p. 166-181
    Wood, B.J. and Trigila, R. (2001). Experimental determination of aluminous clinopyroxene-melt partition coefficients for potassic liquid, with application to the evolution of the Roman province potassic magmas: Chemical Geology 172, p. 213-223
    Yang, H.J., Kinzler, R.J. and Grove, T.J. (1996). Experiments and models of anhydrous, basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar: Contributions to Mineralogy and Petrology 124, p. 1-18
    Zajacz, Z. and Szab, Cs. (2003). Origin of sulfide inclusions in cumulate xenoliths from Ngrd–Gmr Volcanic Field, Pannonian Basin (North Hungary/South Slovakia): Chemical Geology 194, p. 105-117
    Zhang, Z.C., Feng, C.Y., Li, Z.N., Li, S.C., Xin, Y., Li, Z.M., and Wang, X.Z. (2002). Petrochemical study of the Jingpohu Holocene alkali basaltic rocks, northestern China: Geochemical Journal 36, p. 133-153
    Zhou, D., Yu, H.S., Xu, H.H., Shi, X.B., and Chou, Y.W. (2003). Modeling of thermo- rheological structure of lithosphere under the foreland basin and mountain belt of Taiwan: Tectonophysics 374, p. 115-134
    Zindler, A., and Hart, S. (1986). Chemical Geodynamics: Annual Review of Earth and Planetary Sciences 14, p. 493-571

    下載圖示 校內:2006-08-31公開
    校外:2008-08-31公開
    QR CODE